scholarly journals A near-infrared view of AGB stars in nearby dwarf galaxies

2009 ◽  
Vol 5 (S262) ◽  
pp. 345-346
Author(s):  
M. Gullieuszik ◽  
E. V. Held ◽  
L. Girardi ◽  
L. Rizzi ◽  
P. Marigo ◽  
...  

AbstractAs part of our near-infrared photometric survey of nearby dwarf galaxies, we present recent results for Leo I and Leo II dwarf spheroidal galaxies. We selected O- and C-rich AGB stellar populations using two-color diagrams and compared their luminosity functions and star counts with the predictions of the most recent AGB theoretical models.

2018 ◽  
Vol 14 (S344) ◽  
pp. 420-421
Author(s):  
M. E. Sharina ◽  
L. N. Makarova ◽  
D. I. Makarov

AbstractWe compare the properties of stellar populations for globular clusters (GCs) and field stars in two dwarf spheroidal galaxies (dSphs): ESO269-66, a close neighbour of NGC5128, and KKs3, one of the few isolated dSphs within 10 Mpc. We analyse the surface density profiles of low and high metallicity (blue and red) stars in two galaxies using the Sersic law. We argue that 1) the density profiles of red stars are steeper than those of blue stars, which evidences in favour of the metallicity and age gradients in dSphs; 2) globular clusters in KKs3 and ESO 269-66 contain 4 and 40 percent of all stars with [Fe / H] ~ 1.6 dex and the age of 12 Gyr, correspondingly. Therefore, GCs are relics of the first powerful star-forming bursts in the central regions of the galaxies. KKs 3 has lost a smaller percentage of old low-metallicity stars than ESO269-66, probably, thanks to its isolation.


2019 ◽  
Vol 622 ◽  
pp. A53 ◽  
Author(s):  
K. Bekki

Context. One of the currently favored scenarios for the formation of globular clusters (GCs) with multiple stellar populations is that an initial massive stellar system forms (“first generation”, FG), subsequently giving rise to gaseous ejecta which is converted into a second-generation (SG) of stars to form a GC. How such GCs with such FG and SG populations form and evolve, however, remains unclear. Aims. We therefore investigate, for the first time, the sequential formation processes of both FG and SG stars from star-forming massive gas clumps in gas-rich dwarf disk galaxies. Methods. We adopt a novel approach to resolve the two-stage formation of GCs in hydrodynamical simulations of dwarf galaxies. In the new simulations, new gas particles that are much less massive than their parent star particle are generated around each new star particle when the new star enters into the asymptotic giant branch (AGB) phase. Furthermore, much finer maximum time step width (~105 yr) and smaller softening length (~2 pc) are adopted for such AGB gas particles to properly resolve the ejection of gas from AGB stars and AGB feedback effects. Therefore, secondary star formation from AGB ejecta can be properly investigated in galaxy-scale simulations. Results. An FG stellar system can first form from a massive gas clump developing due to gravitational instability within its host gas-rich dwarf galaxy. Initially the FG stellar system is not a single massive cluster, but instead is composed of several irregular stellar clumps (or filaments) with a total mass larger than 106 M⊙. While the FG system is dynamically relaxing, gaseous ejecta from AGB stars can be gravitationally trapped by the FG system and subsequently converted into new stars to form a compact SG stellar system within the FG system. Interestingly, about 40% of AGB ejecta is from stars that do not belong to the FG system (“external gas accretion”). FG and SG stellar systems have different amplitudes of internal rotation and V∕σ. The mass-density (MSG−ρSG) relation for SG stellar systems can be approximated as ρSG ∝ MSG1.5. There can be a threshold total mass of GC host galaxies (Mth = [5 − 23] × 109 M⊙) beyond which the formation of GCs with compact SG stellar systems is possible. Both the initial baryonic mass fraction and the gas mass fraction in dwarfs are crucial parameters that determine whether or not GCs can contain multiple stellar populations. GCs with compact SG stellar systems are more likely to form in dwarf disks with larger gas mass fractions and higher surface mass densities. Formation of binary GCs with SGs and the subsequent GC merging are clearly seen in some models. The derived external gas-accretion process in FG systems initially consisting of stellar clumps will need to be investigated further in more sophisticated simulations.


2011 ◽  
Vol 7 (S284) ◽  
pp. 500-507
Author(s):  
Jay Gallagher ◽  
Carol Lonsdale ◽  
Gustavo Bruzual

If galaxies consisted only of stars, and some early-type systems in general and dwarf spheroidal galaxies in particular fit this prescription, then the calculation of the SED in principle is straightforward. The emergent luminosity at any wavelength simply is the sum over all the luminosities of all the stars in the system. This can be calculated, of course provided that one has a complete understanding of stellar populations, which remains a non-trivial issue. Most galaxies, however, also contain an interstellar medium (ISM). The ISM absorbs, scatters and reprocesses the radiation and relativistic particles from sources within galaxies, primarily stars and AGN. That the ISM is neither isotropic nor homogeneous adds to the challenge of how to properly account for its influence on the luminosity emerging from galaxies.


2013 ◽  
Vol 9 (S298) ◽  
pp. 53-58 ◽  
Author(s):  
Eline Tolstoy

AbstractIn and around the Milky Way halo there are a number of low mass low luminosity dwarf galaxies. Several of these systems have been studied in great detail. I describe recent photometric and spectroscopic studies of the Sculptor dwarf spheroidal galaxy made as part of the DART survey of nearby dwarf spheroidal galaxies.


2004 ◽  
Vol 193 ◽  
pp. 153-157
Author(s):  
F. Kirschbaum ◽  
B. Heiling ◽  
W. Nowotny ◽  
Ch. Spindler ◽  
H. Olofsson ◽  
...  

AbstractFrom photometric observations out to the tidal radii of the galaxies, we were able to identify hundreds of new carbon stars, to derive mean absolute magnitudes〈Mi〉, luminosity functions, and the spatial/radial distributions of the carbon stars in these galaxies. For each galaxy this new material will allow estimates of the tips of their RGBs to derive distance moduli, to derive C/M ratios of the AGB populations and bolometric magnitudes Mbol. At the end of our survey a comparison of all quantities of the late-type stars as a function of the properties of the host galaxies will be made possible.


2012 ◽  
Vol 10 (H16) ◽  
pp. 275-277
Author(s):  
Kim A. Venn

It seems that in the past decade, there have been two paradigm shifts regarding star clusters. Firstly, the observational evidence for multiple stellar populations requires more extended and often complex star formation histories in star clusters. Secondly, theoretical models that form globular clusters in dwarf galaxies that are accreted at very early epochs (z > 5) are able to reproduce the age-metallicity relations observed. For the accretion scenario to be viable, globular clusters should also resemble the chemistry of at least some dwarf galaxies.


2017 ◽  
Vol 14 (S339) ◽  
pp. 336-339
Author(s):  
E. Saremi ◽  
A. Javadi ◽  
J. van Loon ◽  
H. Khosroshahi ◽  
M. Torki

AbstractStars are the main ingredients of galaxies, and the sites of the creation of most chemical elements in our universe. The knowledge that we gain from studying nearby resolved stellar populations assists directly our ability to measure the properties of distant galaxies. The overall objective of this project is to study galaxy formation and evolution in a complete environment of the dwarf galaxies in the Local Group, by using the same methods for all of them. For that purpose, we used the INT to conduct a monitoring survey of the majority of Local-Group dwarf galaxies in order to identify the most evolved AGB stars that are long-period variables (LPV). LPV stars reach their maximum brightness amplitudes at optical wavelengths, owing to changes in temperature. They trace stellar populations as young as ∼30 Myr up to as old as ∼10 Gyr, and identifying them is one of the best ways of reconstructing star-formation history using a method that we have developed and applied successfully to other Local-Group galaxies. Since the luminosity variations span 100–1000 days, we planned observations over 10 epochs, spaced ∼3 months apart; 9 epochs of data have so far been obtained.


2004 ◽  
Vol 217 ◽  
pp. 540-545 ◽  
Author(s):  
Peter M. Weilbacher ◽  
Uta Fritze-V. Alvensleben ◽  
Pierre-Alain Duc

We investigate the stellar populations of a sample of Tidal Dwarf Galaxies, combining observations and evolutionary synthesis models to try and reveal their formation mechanism. on optical images we select a first sample of TDGs for which optical spectroscopy is used to measure metallicities and velocity structure. Finally, we estimate ages, burst strengths, and stellar masses from near-infrared imaging in comparison with a dedicated grid of evolutionary synthesis models, to assess if Tidal Dwarfs are formed out of collapsing gas clouds or by an accumulation of old stars from the parent galaxy or by a combination of both.


Sign in / Sign up

Export Citation Format

Share Document