scholarly journals Three-Dimensional Modelling of EUVE Observations of the Io Plasma Torus

1996 ◽  
Vol 152 ◽  
pp. 457-464
Author(s):  
N. Thomas ◽  
D.E. Innes ◽  
R. Lieu

First results from a 3-D model of EUVE observations of the Io Plasma Torus are reported. The semi-empirical model calculations follow a method previously used to describe visible and near-UV emissions. The extension to EUV wavelengths is described. Several EUV emissions have been successfully modelled although some discrepancies remain at this stage. Most EUV emissions peak at a jovicentric distance of ≈ 5.8 RJ. The observed dawn-dusk asymmetry of the torus was well fitted with a shift parameter (ϵ) of 0.03. The modelling also indicates that optical depth effects need to be considered for several EUV emission lines.

2016 ◽  
Vol 12 (S328) ◽  
pp. 227-229
Author(s):  
P. Magalhães Fabíola ◽  
Walter Gonzalez ◽  
Ezequiel Echer ◽  
Mariza P. Souza-Echer ◽  
Rosaly Lopes ◽  
...  

AbstractThe Io Plasma Torus (IPT) is a doughnut-shaped structure of charged particles, composed mainly of sulfur and oxygen ions. The main source of the IPT is the moon Io, the most volcanically active object in the Solar System. Io is the innermost of the Galilean moons of Jupiter, the main source of the magnetospheric plasma and responsible for injecting nearly 1 ton/s of ions into Jupiter's magnetosphere. In this work ground-based observations of the [SII] 6731 Å emission lines are observed, obtained at the MacMath-Pierce Solar Telescope. The results shown here were obtained in late 1997 and occurred shortly after a period of important eruptions observed by the Galileo mission (1996-2003). Several outbursts were observed and periods of intense volcanic activity are important to correlate with periods of brightness enhancements observed at the IPT. The time of response between an eruption and enhancement at IPT is still not well understood.


1999 ◽  
Vol 104 (A11) ◽  
pp. 25105-25126 ◽  
Author(s):  
Joachim Saur ◽  
Fritz M. Neubauer ◽  
Darrell F. Strobel ◽  
Michael E. Summers

2018 ◽  
Vol 123 (7) ◽  
pp. 1723-1731 ◽  
Author(s):  
R. Hikida ◽  
K. Yoshioka ◽  
G. Murakami ◽  
T. Kimura ◽  
F. Tsuchiya ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Maria Jose Segovia ◽  
Daniel Diaz ◽  
Katarzyna Slezak ◽  
Felipe Zuñiga

AbstractTo analyze the process of subduction of the Nazca and South American plates in the area of the Southern Andes, and its relationship with the tectonic and volcanic regime of the place, magnetotelluric measurements were made through a transversal profile of the Chilean continental margin. The data-processing stage included the analysis of dimensional parameters, which as first results showed a three-dimensional environment for periods less than 1 s and two-dimensional for periods greater than 10 s. In addition, through the geomagnetic transfer function (tipper), the presence of structural electrical anisotropy was identified in the data. After the dimensional analysis, a deep electrical resistivity image was obtained by inverting a 2D and a 3D model. Surface conductive anomalies were obtained beneath the central depression related to the early dehydration of the slab and the serpentinization process of the mantle that coincides in location with a discontinuity in the electrical resistivity of a regional body that we identified as the Nazca plate. A shallow conductive body was located around the Calbuco volcano and was correlated with a magmatic chamber or reservoir which in turn appears to be connected to the Liquiñe Ofqui fault system and the Andean Transverse Fault system. In addition to the serpentinization process, when the oceanic crust reaches a depth of 80–100 km, the ascending fluids produced by the dehydration and phase changes of the minerals present in the oceanic plate produce basaltic melts in the wedge of the subcontinental mantle that give rise to an eclogitization process and this explains a large conductivity anomaly present beneath the main mountain range.


Nature ◽  
1987 ◽  
Vol 327 (6122) ◽  
pp. 492-495 ◽  
Author(s):  
Dyfrig Jones

Author(s):  
Marcin Lefik ◽  
Krzysztof Komeza ◽  
Ewa Napieralska-Juszczak ◽  
Daniel Roger ◽  
Piotr Andrzej Napieralski

Purpose The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor. Design/methodology/approach To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used. Findings The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness. Research limitations/implications The main problem, despite the use of parallel calculations, is the long calculation time. Practical implications The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines. Originality/value The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.


Icarus ◽  
2008 ◽  
Vol 194 (1) ◽  
pp. 153-165 ◽  
Author(s):  
A.J. Steffl ◽  
P.A. Delamere ◽  
F. Bagenal
Keyword(s):  

1982 ◽  
Vol 87 (A12) ◽  
pp. 10395 ◽  
Author(s):  
R. L. Tokar ◽  
D. A. Gurnett ◽  
F. Bagenal

Sign in / Sign up

Export Citation Format

Share Document