galilean moons
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 100 (3) ◽  
pp. 195-206
Author(s):  
Andrea Magnanini

AbstractJupiter and its moons are a complex dynamical system that include several phenomena like tides interactions, moon’s librations and resonances. One of the most interesting characteristics of the Jovian system is the presence of the Laplace resonance, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1 ratio, respectively. It is interesting to study the role of the Laplace resonance in the dynamic of the system, especially regarding the dissipative nature of the tidal interaction between Jupiter and its closest moon, Io. The secular orbital evolution of the Galilean satellites, and so the Laplace resonance, is strongly influenced by the tidal interaction between Jupiter and its moons, especially with Io. Numerous theories have been proposed regarding this topic, but they disagree about the amount of dissipation of the system, therefore about the magnitude and the direction of the evolution of the system, mainly because of the lack of experimental data. The future ESA JUICE space mission is a great opportunity to solve this dispute. The data that will be collect during the mission will have an exceptional accuracy, allowing to investigate several aspects of the dynamics the system and possibly the evolution of Laplace Resonance of the Galilean moons. This work will focus on the gravity estimation and orbit reconstruction of the Galilean satellites by precise orbit determination of the JUICE mission during the Jovian orbital phase using radiometric data.


2021 ◽  
Vol 2 ◽  
Author(s):  
Julian Chela-Flores

This review of miniaturised instrumentation is motivated by the ongoing and forthcoming exploration of the confirmed, or candidate ocean worlds of the Solar System. It begins with a section on the evolution of instrumentation itself, ranging from the early efforts up to the current rich-heritage miniaturised mass spectrometers approved for missions to the Jovian system. The geochemistry of sulphur stable isotopes was introduced for life detection at the beginning of the present century. Miniaturised instruments allow the measurement of geochemical biosignatures with their underlying biogenic coding, which are more robust after death than cellular organic molecules. The role of known stable sulphur isotope fractionation by sulphate-reducing bacteria is discussed. Habitable ocean worlds are discussed, beginning with analogies from the first ocean world known in the Solar System that has always being available for scientific exploration, our own. Instrumentation can allow the search for biosignatures, not only on the icy Galilean moons, but also beyond. Observed sulphur fractionation on Earth suggests a testable “Sulphur Hypothesis”, namely throughout the Solar System chemoautotrophy, past or present, has left, or are leaving biosignatures codified in sulphur fractionations. A preliminary feasible test is provided with a discussion of a previously formulated “Sulphur Dilemma”: It was the Galileo mission that forced it upon us, when the Europan sulphur patches of non-ice surficial elements were discovered. Biogenic fractionations up to and beyond δ34S = −70‰ denote biogenic, rather than inorganic processes, which are measurable with the available high sensitivity miniaturised mass spectrometers. Finally, we comment on the long-term exploration of ocean worlds in the neighbourhood of the gas and ice giants.


2021 ◽  
Author(s):  
Claire-Alexandra Baskevitch ◽  
Baptiste Cecconi ◽  
Ronan Modolo

<p>Galilean moons are embedded in Jupiter’s giant magnetosphere. The jovian plasma particles interact with the atmosphere of the moons, exchanging momentum and energy, and generate different phenoma such as aurora, electric current, etc.</p> <p>The exploration of the Galilean moons, and in particular Ganymede and Europa considered as potential habitats, are listed among the main objectives of the ESA JUpiter ICy moon Explorer mission. In preparation of future observations, a simulation effort is conducted to describe the Europa moon-magnetosphere system as well as a study of radio wave propagation in the environments of Ganymede and Europa using a ray tracing code.</p> <p>LatHyS is a hybrid 3D, multi-species and parallel simulation model which is based on a kinetic description of ions and a fluid description of electrons. The model is based on the CAM-CL algorithm that Alan Matthews¹ outlined in 1994. It allows to describe the interaction between the jovian plasma and the moon environments. As Ganymede's environment has already been implemented, we propose to enrich the model by completing it with Europa's – jovian plasma interaction and to optimize it in order to improve the accuracy of the results.</p> <p>Artemis-P, developed by Gautier² in 2013, is a ray tracing code that calculates the trajectory of waves through a given environment. Planetary environments are anisotropic and inhomogeneous, so that radio waves can undergo refraction, reflection, scattering, diffraction, interference, etc. between the source and the detector. The ray tracing methods allow to treat the refraction and reflection phenomena at large scales compared to the wavelength. The proposed work is to adjust this program to the environments of Ganymede and Europa using data from LatHyS simulations.</p> <p> </p> <p align="left">Références :</p> <p align="left"><sup>1</sup> Alan P. Matthews, Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations, Journal of Computational Physics, Volume 112, Issue 1, 1994, Pages 102-116, ISSN 0021-9991, https://doi.org/10.1006/jcph.1994.1084.</p> <p align="left">² Anne-Lise Gautier. Étude de la propagation des ondes radio dans les environnements planétaires. Planétologie et astrophysique de la terre [astro-ph.EP]. Observatoire de Paris, 2013. Français. tel-01145651v2</p>


2021 ◽  
Author(s):  
Laura Isabel Tenelanda-Osorio ◽  
Olivier Mousis ◽  
Alexis Bouquet ◽  
Grégoire Danger
Keyword(s):  

2021 ◽  
Author(s):  
Duncan V. Mifsud ◽  
Zuzana Kaňuchová ◽  
Péter Herczku ◽  
Zoltán Juhász ◽  
Sándor T. S. Kovács ◽  
...  

<p>The implantation of reactive charged species within low-temperature solids is relevant to astrochemistry and may lead to physico-chemical changes within the solid, such as the formation of new molecules which incorporate the projectile. We have performed the high-fluence (>10<sup>16</sup> ions cm<sup>–2</sup>) implantation of S<sup>+</sup> into CO, CO<sub>2</sub> and H<sub>2</sub>O ices at 20 and 70 K. Our results show that implantation into CO and CO<sub>2</sub> results in the formation of SO<sub>2</sub> at 20 K, although no evidence of SO<sub>2</sub> was observed at 70 K. Implantation into H<sub>2</sub>O yields H<sub>2</sub>SO<sub>4</sub> hydrates. These results are applicable to Europa; one of the Galilean moons of Jupiter.</p>


2021 ◽  
Author(s):  
Oriane Gassot ◽  
Alain Herique ◽  
Wlodek Kofman ◽  
Olivier Witasse
Keyword(s):  

2021 ◽  
Author(s):  
Alessandro Moirano ◽  
Alessandro Mura ◽  
Alberto Adriani ◽  
Roberto Sordini ◽  
Alessandra Migliorini ◽  
...  

<p>The Jovian Infrared Auroral Mapper (JIRAM) on board Juno is a spectro-imager which is observing the<br>atmosphere of Jupiter and its auroral emission using its two imagers in the L (3.3-3.6μm) and M bands (4.5-<br>5.0μm) and a spectrometer (2-5 μm spectral range).<br>The highly elliptic orbit of Juno and the unprecedented resolution of the JIRAM imager allowed to retrieve<br>wealth of details about the morphology of moon-related aurorae. This phenomenon is due to the jovian magnetic<br>field sweeping past the Galiean moons, which generate Alfven waves travelling towards the ionosphere and set<br>up field aligned currents. When the associated electrons reach the ionosphere, they interact with the hydrogen<br>and make it to glow. In particular, the tails of the footprints showed a spot-like substructure consistently, which<br>were investigated using the L-band of the imager from perijove 4 to perijove 30. This feature was observed close<br>to the footprints, where the the typical distance between spots lies between 250km and 500km. This distance<br>decreases to 150km in a group of three observations in the northern emisphere when each moon is close to 250 ◦<br>west longitude. No correlation with orbital parameters such as the longitude of the moons was found so far,<br>which suggests that such morphology is almost purely due to ionospheric processes.<br>Moreover, during PJ 13 a long sequence of images of the Io footprint was shot and it revealed that the<br>secondary spots appears to corotate with Jupiter. This behaviour is observed also during orbits 14 and 26.<br>During these sequences JIRAM clearly observed the Io footprint leaving behind a trail of ”footsteps” as bright<br>spots.<br>The characteristics of these spots are incompatible with multiple reflection of Alfven waves between the two<br>emispheres. Instead, we are currently investigating ionospheric processes like the feedback instability (FI) as a<br>potential candidate to explain the generation of the observed small scale structure. This process relies on local<br>enhacement of conductivity in the ionosphere, which is affected by electron precipitation. Order of magnitude<br>estimates from the FI are compatible with the inter-spot distance and the stillness of the spots.</p>


2020 ◽  
Author(s):  
Baptiste Cecconi ◽  
Corentin K Louis ◽  
Claudio Munoz ◽  
Claire Vallat

<p>The ExPRES code simulates exoplanetary and planetary auroral radio emissions. It could be used to predict and interpret Jupiter’s radio emissions in the hectometric and decametric range. In this study, we model the occultations of the Jovian auroral radio emissions during the Galilean moons flybys by the Galileo spacecraft. In this study, we focus on auroral radio emissions, configuring the ExPRES simulations runs with typical radio source physical parameters. We compare the simulations run results with the actual Galileo/PWS observations, and show that we accurately model the temporal occurrence of the occultations in the whole spectral range observed by Galileo. We can then predict auroral radio emission occultations by the Galilean moons for the Juno and JUICE missions. ExPRES will be used by the JUICE/RPWI (Radio Plasma Waves Investigation) team to prepare its operation planning during the Galilean moon flybys for, e.g., the Galilean moon ionosphere characterization science objective, with passive ionospheric sounding during ingress and egress of Jovian radio source occultations. </p>


2020 ◽  
Author(s):  
Corentin Louis ◽  
Philippe Louarn ◽  
William Kurth ◽  
Frederic Allegrini ◽  
Jamey Szalay

<p><em class=""><span class="">At Jupiter, part of the auroral radio emissions are controlled by the Galilean moons Io,</span><span class=""> </span><span class="">Europa and Ganymede. Until now, they have been remotely detected using ground-based </span><span class="">radio-telescope or electric antenna aboard spacecraft. The polar trajectory of the Juno</span><span class=""> </span><span class="">orbiter leads to cross the magnetic flux tube connected to these moons, or their tail, and </span><span class="">gives a direct in-situ measurements of the characteristics </span><span class="">of these decametric moon induced radio emissions </span><span class="">(such as the electron population, size of the source, and beaming</span><span class=""> </span><span class="">angle and growth rate of the emission)</span><span class="">. In this study,</span><span class=""> </span><span class="">we focus on the crossing of the Ganymede flux tube. The study of Juno/JADE-E and</span><span class=""> </span><span class="">Juno/Waves data leads to an estimated source size of a few 100s km,</span><span class=""> an electron population of energy </span><span class="">E</span><span class="">= 8</span><span class="">±</span><span class="">2 keV and an emission beaming angle</span><span class=""> </span><span class="">of </span><span class="">θ</span><span class="">= 80</span><span class="">±</span><span class="">2</span><span class="">° </span><span class="">from the magnetic field lines. Finally, this crossing of a decametric radio emission induced by a moon brings us new constrains on the Cyclotron Maser Instability process</span></em></p>


Sign in / Sign up

Export Citation Format

Share Document