scholarly journals Observations and Models for Red Giants with Unusual Dust

1989 ◽  
Vol 106 ◽  
pp. 367-367
Author(s):  
Ian Griffin ◽  
C.J. Skinner ◽  
B.R. Whitmore

We present near IR (H, K and L band) medium resolution (ƛ/Δƛ ∼ 600) spectra for a selection of 9 red giants which have previously been shown to exhibit anomalous dust emission as characterised by their IRAS LRS spectra. The objects observed (during UKIRT and AAT service time) include Carbon stars whose LRS spectra show the 9.7μm silicate feature and also M stars whose LRS spectra display an 11.3μm feature similar to that usually associated with emission from SiC dust grains.

1987 ◽  
Vol 120 ◽  
pp. 583-598
Author(s):  
David L. Lambert

A general review is given of the astrophysical information obtainable from observations of molecules in stellar photospheres. Through selected examples, the use of molecules as thermometers (e.g., the OH 3 μm V-R lines in the Sun and α Ori) and as probes of the isotopic (e.g., iMg in metal-poor dwarfs, 12C/13C in cool carbon stars) and elemental abundances (e.g., CNO in red giants) is sketched. All of the (carefully) selected analyses assume that local thermodynamic equilibrium (LTE) prevails.


1984 ◽  
Vol 78 ◽  
pp. 257-260
Author(s):  
K. Ishida

AbstractStellar content contributing to near IR radiation do not show radial differentiation in the Galaxy. Late-type giants and supergiants supply about 70% of the total volume emissivity at the K band, in the solar vicinity within 1 kpc, and also at the distance of several kpc in the Scutum region.


1989 ◽  
Vol 134 ◽  
pp. 393-395
Author(s):  
A. Lawrence

I am one of a large team studying an X-ray flux limited sample of 35 AGN, at radio (Unger et al 1987 MNRAS 228 521), IR (Ward et al 1987 ApJ 315 74 and Carleton et al 1987 ApJ 318 595), optical-UV (Boisson et al in preparation), and X-ray (Turner PhD thesis, Leicester) wavelengths. A gap in the data which we have just started to fill is the millimetre region. (Lawrence, Ward, Elvis, Robson, Smith, Duncan, and Rowan-Robinson). In Jan/Feb 1988 we made measurements of twelve objects at 800 and 1100 micron, using the ROE/QMC bolometer, UKT14, on the new UK/Dutch/Canadian facility on Mauna Kea, the James Clerk Maxwell Telescope, reaching 1 sigma sensitivity of ∼15–20 mJy, an order of magnitude improvement over previous data. The four radio loud objects measured were easily detected, as expected. These all have a strong blazar component, showing smooth but curved spectra over many decades, possibly log-Gaussian in form (Landau et al 1986 ApJ 308 78), or alternatively explicable by a small number of power-law components (Robson et al 1988 MNRAS in press). In any case, other evidence points to non-thermal radiation by a relativistically moving feature (high polarization, strong variability, superluminal motion). Eight radio quiet objects were measured, and upper limits only found, except for a possible four sigma detection of N2992. In all cases, the mm limits are far below the 100 micron IRAS fluxes. In four of the nearest objects, this is not too surprising, as fluxes are rising steeply throughout 12 to 100 micron, a sign that the IRAS data is dominated by cool interstellar dust emission (“cirrus”) from the discs of the parent galaxies. However we can also say that any postulated power law component of spectral index ∼1 dominating the near-IR, must become self-absorbed around ∼200 micron if the mm limits are not to be exceeded. Four rather more interesting objects are shown in Fig. 1. Again, any underlying power-law component must be self-absorbed by ∼100 micron, but is not clear that such a power-law is needed. N5506 and IC4329A have falling optical energy distributions, and large H α/Hβ ratios; on the other hand, the IR continuum lies well above the X-ray level, so there is good argument for absorption and re-radiation by dust. N4151, while flat through the near-IR-optical, has a large hump centred at ∼25 micron. Particularly important here are further new measurements by Engargiola et al (1987, ApJ in press),and Edelson et al (1988, preprint) which show the energy distribution to be falling so steeply from 155 to 438 micron that self-absorbed synchrotron is ruled out in this region. In fact, the whole energy distribution from mm to UV can be modelled without a power law at all, as shown in Fig 2. This uses a starburst component (from Rowan-Robinson and Crawford 1988, MNRAS in press), hot dust represented by three greybodies at 200K, 500K, and 1000K, starlight from a nuclear cusp, and a blackbody at 30,000K. Even MKN590, which at first sight looks like a power-law, can be modelled by similar components (Fig. 3).


1979 ◽  
Vol 47 ◽  
pp. 239-246
Author(s):  
J. R. Mould

AbstractThe need for establishing classification criteria at long wavelengths is stressed. The usefulness of doing this is illustrated with a discussion of the composite spectra of FU Orionis stars. Spectra of these pre-main-sequence stars from 1.5-2.5μ were obtained with a Fourier Transform Spectrometer. Luminosity criteria in the l-2μ range are also discussed with application to M stars.


2018 ◽  
Vol 616 ◽  
pp. A132 ◽  
Author(s):  
R. Lallement ◽  
L. Capitanio ◽  
L. Ruiz-Dern ◽  
C. Danielski ◽  
C. Babusiaux ◽  
...  

Context. Gaia data and stellar surveys open the way to the construction of detailed 3D maps of the Galactic interstellar (IS) dust based on the synthesis of star distances and extinctions. Dust maps are tools of broad use, also for Gaia-related Milky Way studies. Aims. Reliable extinction measurements require very accurate photometric calibrations. We show the first step of an iterative process linking 3D dust maps and photometric calibrations, and improving them simultaneously. Methods. Our previous 3D map of nearby IS dust was used to select low-reddening SDSS/APOGEE-DR14 red giants, and this database served for an empirical effective temperature- and metallicity-dependent photometric calibration in the Gaia G and 2MASS Ks bands. This calibration has been combined with Gaia G-band empirical extinction coefficients recently published, G, J, and Ks photometry and APOGEE atmospheric parameters to derive the extinction of a large fraction of the survey targets. Distances were estimated independently using isochrones and the magnitude-independent extinction KJ−Ks. This new dataset has been merged with the one used for the earlier version of dust map. A new Bayesian inversion of distance-extinction pairs has been performed to produce an updated 3D map. Results. We present several properties of the new map. A comparison with 2D dust emission reveals that all large dust shells seen in emission at middle and high latitudes are closer than 300 pc. The updated distribution constrains the well-debated, X-ray bright North Polar Spur to originate beyond 800 pc. We use the Orion region to illustrate additional details and distant clouds. On the large scale the map reveals a complex structure of the Local Arm. Chains of clouds of 2–3 kpc in length appear in planes tilted by ≃15° with respect to the Galactic plane. A series of cavities oriented along a l ≃ 60–240° axis crosses the Arm. Conclusions. The results illustrate the ongoing synergy between 3D mapping of IS dust and stellar calibrations in the context of Gaia. Dust maps provide prior foregrounds for future calibrations appropriate to different target characteristics or ranges of extinction, allowing us in turn to increase extinction data and produce more detailed and extended maps.


1995 ◽  
Vol 155 ◽  
pp. 425-426
Author(s):  
C. Loup ◽  
L.B.F.M. Waters ◽  
F. Kerschbaum ◽  
J. Hron ◽  
E. Josselin ◽  
...  

Some years ago, Willems & de Jong (1988) noticed that many carbon stars display an excess of emission at 60 µm and explained it by the presence of a fossil dust shell, containing only cold dust. This detached dust shell would be the result of an interruption of the mass loss, consequence of a thermal pulse. Detached shells around C stars have actually been mapped in the CO lines (Olofsson et al. 1992), and at 60µm (Waters et al. 1994). In 1992, Zijlstra et al. found about 100 M stars displaying an excess of emission at 60 µm, and proposed that interruptions of the mass loss due to thermal pulses is a general phenomenon on the AGB. This assumption is now supported by the theoretical calculations of Vassiliadis & Wood (1993). Here we present a detailed study of the 100 M stars of Zijlstra et al. in order to test the previous assumption.


1989 ◽  
Vol 106 ◽  
pp. 51-51
Author(s):  
Yu. L. Frantsman

Simulated populations of the AGB stars were calculated with different assumptions about mass loss, initial chemical composition and dredge-up efficiency. The early-AGB (E-AGB) phase was taken into account. The numbers of carbon and oxygen stars per 106 generated stars and the ratio (NC/NM) of these numbers were obtained. It is possible to match theoretically obtained NC/NM with the observations only if the luminosity of observed stars Mbol < -3.5; otherwise it is necessary to take into account the E-AGB phase. The data in the Table are for all AGB stars in the Galaxy and for stars with Mbol < -1.80 in the LMC.


2019 ◽  
Vol 492 (1) ◽  
pp. 1348-1362 ◽  
Author(s):  
Masaki Takayama ◽  
Yoshifusa Ita

ABSTRACT The origin of long secondary periods (LSPs) in red giant variables is unknown. We investigate whether stellar pulsations in red giants can explain the properties of the LSP variability. VIJHKs light curves obtained by OGLE and the IRSF/SIRIUS survey in the Small Magellanic Cloud are examined. The sample of oxygen-rich LSP stars shows evidence of a phase lag between the light curves of optical and near-IR band. The change in radius contributes to the bolometric change roughly half as much as the change in temperature, implying that the change in effective temperature plays an important role in the luminosity change associated with the LSPs. We have created numerical models based on the spherical harmonics to calculate the light amplitudes of dipole mode variability and have found that the models can roughly reproduce the amplitude–amplitude relations (e.g. (ΔI, ΔH)). The LSP variability can be reproduced by the dipole mode oscillations with temperature amplitude of ≲100 and ≲150 K for oxygen-rich stars and most carbon stars, respectively. Radial pulsation models are also examined and can reproduce the observed colour change of the LSPs. However, there is still an inconsistency in length between the LSP and periods of radial fundamental mode. On the other hand, theoretical period–luminosity relations of the dipole mode corresponding to so-called oscillatory convective mode were roughly consistent with observation. Hence, our result suggests that the observations can be consistent with stellar pulsations corresponding to oscillatory convective modes.


Sign in / Sign up

Export Citation Format

Share Document