scholarly journals Non-radially Pulsating Hot Stars: Non-radial Pulsations and Be Phenomenon

1999 ◽  
Vol 169 ◽  
pp. 329-336
Author(s):  
Yoji Osaki

AbstractWe discuss a possible role of non-radial oscillations as a cause of mass-loss in hot stars. In particular, we propose a working model for the episodic mass-loss in Be stars. In this model, equatorial mass loss is thought to be driven by wave-breaking phenomenon of large-amplitude non-radial waves and a circumstellar disk could thus be formed around the equatorial plane of a rapidly rotating star. A kind of relaxation-oscillation cycle could be established between the Be phase and non-Be phase, in which an interplay between non-radial oscillations in stellar atmosphere and the circumstellar disk is essential. We also discuss a viscous decretion-disk model for the circumstellar envelope around Be stars.

2010 ◽  
Vol 6 (S272) ◽  
pp. 95-96
Author(s):  
Meghan A. McGill ◽  
T. A. Aaron. Sigut ◽  
Carol E. Jones

AbstractClassical Be stars are rapidly rotating, hot stars that possess an equatorial disk formed from gas released by the central star. The mechanism driving the stellar mass loss has yet to be fully explained, but the rapid rotation of the central B star is believed to be crucial. Rapid rotation also produces gravity darkening, and we have now extended our disk models to include these effects. In this contribution, we focus on the effect of gravity darkening on the thermal structure of a circumstellar disk.


1999 ◽  
Vol 169 ◽  
pp. 19-23
Author(s):  
Karen S. Bjorkman

AbstractA survey and monitoring of the spectropolarimetric characteristics of hot stars over the entire visible wavelength range has been carried out over the past 8 years using the HPOL instrument at the Pine Bluff Observatory. Data from these projects is being used to derive physical characteristics of circumstellar envelopes. Quantitative modeling of the polarization, in combination with optical interferometry, has shown that the circumstellar disks of classical Be stars are geometrically thin, consistent with either the wind-compressed disk model or with hydrostatically supported Keplerian disks. Furthermore, spectropolarimetric variability, which is significant in a large fraction of the hot stars observed, provides information about changes occuring in the circumstellar envelope. For example, polarimetric changes provide a critical test of the one-armed density wave models proposed to explain observed V/R variations.


1987 ◽  
Vol 92 ◽  
pp. 84-86
Author(s):  
D. R. Gies ◽  
David McDavid

Evidence is now accumulating that many Be stars display photospheric line profile variations on timescales of days or less that are probably caused by nonradial pulsations (Baade 1984; Penrod 1986). In some circumstances these pulsations can promote mass loss into the circumstellar envelope, and consequently the conditions in the inner part of the envelope may vary on similar timescales. Changes in the envelope could produce variations in the polarization and emission line profiles, and observers have reported rapid variability in both. We describe here an initial attempt to search for simultaneous variations in continuum polarization, Hα emission, and the He I λ6678 photospheric absorption line in order to investigate correlated changes on short timescales.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2020 ◽  
Vol 642 ◽  
pp. A235
Author(s):  
Kateryna Kravchenko ◽  
Markus Wittkowski ◽  
Alain Jorissen ◽  
Andrea Chiavassa ◽  
Sophie Van Eck ◽  
...  

Context. Asymptotic giant branch (AGB) stars are characterized by substantial mass loss, however the mechanism behind it not yet fully understood. The knowledge of the structure and dynamics of AGB-star atmospheres is crucial to better understanding the mass loss. The recently established tomographic method, which relies on the design of spectral masks containing lines that form in given ranges of optical depths in the stellar atmosphere, is an ideal technique for this purpose. Aims. We aim to validate the capability of the tomographic method in probing different geometrical depths in the stellar atmosphere and recovering the relation between optical and geometrical depth scales. Methods. We applied the tomographic method to high-resolution spectro-interferometric VLTI/AMBER observations of the Mira-type AGB star S Ori. The interferometric visibilities were extracted at wavelengths contributing to the tomographic masks and fitted to those computed from a uniform disk model. This allows us to measure the geometrical extent of the atmospheric layer probed by the corresponding mask. We then compared the observed atmospheric extension with others measured from available 1D pulsation CODEX models and 3D radiative-hydrodynamics CO5BOLD simulations. Results. While the average optical depths probed by the tomographic masks in S Ori decrease (with ⟨log τ0⟩ = −0.45, − 1.45, and − 2.45 from the innermost to the central and outermost layers), the angular diameters of these layers increase, from 10.59 ± 0.09 mas through 11.84 ± 0.17 mas, up to 14.08 ± 0.15 mas. A similar behavior is observed when the tomographic method is applied to 1D and 3D dynamical models. Conclusions. This study derives, for the first time, a quantitative relation between optical and geometrical depth scales when applied to the Mira star S Ori, or to 1D and 3D dynamical models. In the context of Mira-type stars, knowledge of the link between the optical and geometrical depths opens the way to deriving the shock-wave propagation velocity, which cannot be directly observed in these stars.


1994 ◽  
Vol 162 ◽  
pp. 455-468
Author(s):  
J.E. Bjorkman

We discuss the effects of rotation on the structure of radiatively-driven winds. When the centrifugal support is large, there is a region, at low latitudes near the surface of the star, where the acceleration of gravity is larger than the radiative acceleration. Within this region, the fluid streamlines “fall” toward the equator. If the rotation rate is large, this region is big enough that the fluid from the northern hemisphere collides with that from the southern hemisphere. This produces standing shocks above and below the equator. Between the shocks, there is a dense equatorial disk that is confined by the ram pressure of the wind. A portion of the flow that enters the disk proceeds outward along the equator, but the inner portion accretes onto the stellar surface. Thus there is simultaneous outflow and infall in the equatorial disk. The wind-compressed disk forms only if the star is rotating faster than a threshold value, which depends on the ratio of wind terminal speed to stellar escape speed. The spectral type dependence of the disk formation threshold may explain the frequency distribution of Be stars. Observational tests of the wind-compressed disk model indicate that, although the geometry of the disk agrees with observations of Be stars, the density is a factor of 100 too small to produce the IR excess, Hα emission, and optical polarization, if current estimates of the mass-loss rates are used. However, recent calculations of the ionization balance in the wind indicate that the mass-loss rates of Be stars may be significantly underestimated.


2000 ◽  
Vol 175 ◽  
pp. 472-475
Author(s):  
L. Cidale ◽  
J. Zorec ◽  
J.P. Maillard ◽  
N. Morrell

AbstractThe activities detected in Be stars indicate that the formation of the circumstellar envelope and its structure cannot be studied independently of the phenomena taking place in the outermost layers of the central stars. Assuming that related to the stellar activity there is an expanding atmospheric region with temperatures Te > Teff followed by an envelope with a decreasing temperature, we calculated hydrogen line profiles for different velocity fields and different positions of temperature maxima relative to the underlying photosphere. Results show that the Hα line is not very sensitive to changes introduced to the stellar atmosphere and to the nearby circumstellar layers. Moreover, the Hα emission line profiles look like those produced by disc-like circumstellar envelopes seen pole-on, although the model for the circumstellar envelope is spherical. However, the first members of the Paschen and Brackett series are strongly sensitive to any changes introduced in the photospheric and exophotospheric layers. We conclude that the study of these lines may then be valuable to obtain new insight on the activity of central stars and on the phenomena involved in circumstellar envelope formation in Be stars.


2013 ◽  
Vol 9 (S301) ◽  
pp. 465-466
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis

AbstractThe Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.


2005 ◽  
Vol 192 ◽  
pp. 209-213
Author(s):  
Raphael Hirschi ◽  
Georges Meynet ◽  
André Maeder ◽  
Stéphane Goriely

SummaryThe Geneva evolutionary code has been modified to study the advanced stages (Ne, O, Si burnings) of rotating massive stars. Here we present the results of four 20 M⊙ stars at solar metallicity with initial rotational velocities, vini, of 0, 100, 200 and 300 km/s in order to show the crucial role of rotation in stellar evolution. As already known, rotation increases mass loss and core masses [4]. A fast rotating 20 M⊙ star has the same central evolution as a non-rotating 26 M⊙. Rotation also increases strongly net total metal yields. Furthermore, rotation changes the SN type so that more SNIb are predicted (see [5] and [6]). Finally, SN1987A-like supernovae progenitor colors can be explained in a single rotating star scenario.


1976 ◽  
Vol 70 ◽  
pp. 179-189 ◽  
Author(s):  
J. M. Marlborough ◽  
Theodore P. Snow

Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of twelve objects classified as Be or shell stars, and an additional 19 dwarfs of spectral classes B0-B4. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si iv doublet at λ 1400 Å, indicating the presence of outflowing material with maximum velocities of nearly 1000 km s−1. Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5. Later than B0.5, the only survey objects showing this phenomenon are Be stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the UV flux from B1-B3 dwarfs is sufficient to drive high-velocity stellar winds only if rotation reduces the effective gravity near the equator. The role of mass-loss in producing the Be star phenomenon and the effects of rotation on mass loss are discussed.


Sign in / Sign up

Export Citation Format

Share Document