scholarly journals Making a Be star: the role of rotation and pulsations

2013 ◽  
Vol 9 (S301) ◽  
pp. 465-466
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis

AbstractThe Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

1992 ◽  
Vol 151 ◽  
pp. 147-156
Author(s):  
Dietrich Baade

Two hypotheses have been put forward for the rôle of binarity in Be stars: (1) All Be stars are interacting binaries. (2) Roughly one-half of the observed Be stars are post-mass exchange binaries with compact companions. Contrary to (1), (2) does not attempt to explain also the existence of disks in Be stars. After the spin-up by mass and angular momentum transfer, the B star somehow has to succeed to form and maintain the disk. Since rapid rotation is only necessary but not sufficient for this transformation, the effect of duplicity would merely be to give more stars the opportunity to become a Be star. Model (1) is not nearly realistic as is also underlined by a new spectroscopic survey for cool companions. The verification of (2) on the basis of the ROSAT All-Sky Survey has just begun; but a serious deficiency of white dwarf companions is already apparent. Binarity currently provides no extra clue on the origin of the Be phenomenon.


2004 ◽  
Vol 215 ◽  
pp. 515-524 ◽  
Author(s):  
Stanley P. Owocki

The characteristic signature of Be Stars is the Balmer line emission understood to arise in a circumstellar disk. Unlike the accretion disks of protostars or mass-exchange binary systems, the evolved and generally single or wide-binary status of Be Stars seems to require that its disk must form from mass ejection (a.k.a. decretion) from the star itself. In this paper, I use analogies with launching orbital satellites to discuss two candidate processes (radiation, pulsation) for driving such orbital mass ejection, with particular emphasis on the role of the rapid, possibly near-critical, rotation of Be Stars in facilitating the formation of their signature disks.


1976 ◽  
Vol 70 ◽  
pp. 377-382 ◽  
Author(s):  
R. L. Kurucz ◽  
R. E. Schild

A detailed calculation of the radiative acceleration in B-type stars shows it to be a double-peaked function of effective temperature at small optical depths. The two peaks are shown to coincide approximately with peaks in the distribution of mean Hα emission strength as a function of B - V color in Be stars. These facts suggest that radiation may play an important role in the support of the Be star extended atmosphere.


2000 ◽  
Vol 175 ◽  
pp. 656-667 ◽  
Author(s):  
M.J. Coe

AbstractThis paper will review the status of our observations and understanding of Be stars in X-ray binary systems. In virtually all cases the binary partner to the Be star is a neutron star. The circumstellar disk provides the accretion fuel and hence stimulates the X-ray emission, whilst the neutron star provides a valuable probe of the environment around the Be star. The results coming from studies of such systems are helping in our understanding of the Be phenomenon.


2010 ◽  
Vol 6 (S272) ◽  
pp. 73-78
Author(s):  
Adrian T. Potter ◽  
Christopher A. Tout

AbstractThe effects of rapid rotation on stellar evolution can be profound but we are only now starting to gather the data necessary to adequately determine the validity of the many proposed models of rotating stars. Some aspects of stellar rotation, particularly the treatment of angular momentum transport within convective zones, still remain very poorly explored. Distinguishing between different models is made difficult by the typically large number of free parameters in models compared with the amount of available data. This also makes it difficult to determine whether increasing the complexity of a model actually results in a better reflection of reality. We present a new code to straightforwardly compare different rotating stellar models using otherwise identical input physics. We use it to compare several models with different treatments for the transport of angular momentum within convective zones.


2010 ◽  
Vol 6 (S272) ◽  
pp. 95-96
Author(s):  
Meghan A. McGill ◽  
T. A. Aaron. Sigut ◽  
Carol E. Jones

AbstractClassical Be stars are rapidly rotating, hot stars that possess an equatorial disk formed from gas released by the central star. The mechanism driving the stellar mass loss has yet to be fully explained, but the rapid rotation of the central B star is believed to be crucial. Rapid rotation also produces gravity darkening, and we have now extended our disk models to include these effects. In this contribution, we focus on the effect of gravity darkening on the thermal structure of a circumstellar disk.


2011 ◽  
Vol 7 (S282) ◽  
pp. 261-262 ◽  
Author(s):  
K. Šejnová ◽  
V. Votruba ◽  
P. Koubský

AbstractThe Be stars are still a big unknown in respect to the origin and geometry of the circumstellar disk around the star. Program shellspec is designed to solve the simple radiative transfer along the line of sight in three-dimensional moving media. Our goal was to develop an effective method to search in parameter space, which can allow us to find a good estimate of the physical parameters of the disk. We also present here our results for Be star 60 Cyg using the modified code.


2020 ◽  
Vol 636 ◽  
pp. A110 ◽  
Author(s):  
E. S. G. de Almeida ◽  
A. Meilland ◽  
A. Domiciano de Souza ◽  
P. Stee ◽  
D. Mourard ◽  
...  

Aims. We present a detailed visible and near-infrared spectro-interferometric analysis of the Be-shell star o Aquarii from quasi-contemporaneous CHARA/VEGA and VLTI/AMBER observations. Methods. We analyzed spectro-interferometric data in the Hα (VEGA) and Brγ (AMBER) lines using models of increasing complexity: simple geometric models, kinematic models, and radiative transfer models computed with the 3D non-LTE code HDUST. Results. We measured the stellar radius of o Aquarii in the visible with a precision of 8%: 4.0 ± 0.3 R⊙. We constrained the circumstellar disk geometry and kinematics using a kinematic model and a MCMC fitting procedure. The emitting disk sizes in the Hα and Brγ lines were found to be similar, at ~10–12 stellar diameters, which is uncommon since most results for Be stars indicate a larger extension in Hα than in Brγ. We found that the inclination angle i derived from Hα is significantly lower (~15°) than the one derived from Brγ: i ~ 61.2° and 75.9°, respectively. While the two lines originate from a similar region of the disk, the disk kinematics were found to be near to the Keplerian rotation (i.e., β = −0.5) in Brγ (β ~ −0.43), but not in Hα (β ~ −0.30). After analyzing all our data using a grid of HDUST models (BeAtlas), we found a common physical description for the circumstellar disk in both lines: a base disk surface density Σ0 = 0.12 g cm−2 and a radial density law exponent m = 3.0. The same kind of discrepancy, as with the kinematic model, is found in the determination of i using the BeAtlas grid. The stellar rotational rate was found to be very close (~96%) to the critical value. Despite being derived purely from the fit to interferometric data, our best-fit HDUST model provides a very reasonable match to non-interferometric observables of o Aquarii: the observed spectral energy distribution, Hα and Brγ line profiles, and polarimetric quantities. Finally, our analysis of multi-epoch Hα profiles and imaging polarimetry indicates that the disk structure has been (globally) stable for at least 20 yr. Conclusions. Looking at the visible continuum and Brγ emission line only, o Aquarii fits in the global scheme of Be stars and their circumstellar disk: a (nearly) Keplerian rotating disk well described by the viscous decretion disk (VDD) model. However, the data in the Hα line shows a substantially different picture that cannot fully be understood using the current generation of physical models of Be star disks. The Be star o Aquarii presents a stable disk (close to the steady-state), but, as in previous analyses, the measured m is lower than the standard value in the VDD model for the steady-state regime (m = 3.5). This suggests that some assumptions of this model should be reconsidered. Also, such long-term disk stability could be understood in terms of the high rotational rate that we measured for this star, the rate being a main source for the mass injection in the disk. Our results on the stellar rotation and disk stability are consistent with results in the literature showing that late-type Be stars are more likely to be fast rotators and have stable disks.


1999 ◽  
Vol 169 ◽  
pp. 329-336
Author(s):  
Yoji Osaki

AbstractWe discuss a possible role of non-radial oscillations as a cause of mass-loss in hot stars. In particular, we propose a working model for the episodic mass-loss in Be stars. In this model, equatorial mass loss is thought to be driven by wave-breaking phenomenon of large-amplitude non-radial waves and a circumstellar disk could thus be formed around the equatorial plane of a rapidly rotating star. A kind of relaxation-oscillation cycle could be established between the Be phase and non-Be phase, in which an interplay between non-radial oscillations in stellar atmosphere and the circumstellar disk is essential. We also discuss a viscous decretion-disk model for the circumstellar envelope around Be stars.


1982 ◽  
Vol 98 ◽  
pp. 247-251
Author(s):  
P. Persi ◽  
M. Ferrari-Toniolo ◽  
G.L. Grasdalen

Preliminary results of our infrared observations from 2.3 up to 10 and 20 microns of the Be-X-ray stars X Per, γ Cas and HDE 245770, indicate the presence of an ionized circumstellar disk with an electron density law of the type ne ∝ r−3.5. x Per and γ Cas show besides, variable infrared excess at 10μ suggesting variability in the stellar wind. LS I+65°010 presents an anomalous infrared energy distribution for a Be star.


Sign in / Sign up

Export Citation Format

Share Document