scholarly journals On the Time-Scale for Turn-Off of a Nova After the Outburst

1979 ◽  
Vol 53 ◽  
pp. 274-279
Author(s):  
Sumner Starrfield

It is now generally accepted that a nova outburst is caused by a thermonuclear runaway (TR) in the accreted hydrogen rich envelope of a carbon white dwarf. Over the past few years we have studied the evolution of such runaways and have shown that the calculated evolutionary sequences are in substantial agreement with the observations (Starrfield, et. al. 1978; Sparks, et. al. 1978). In the published work we have varied the white dwarf mass, the envelope mass, the accreted envelope mass, and the chemical composition in the envelope (Starrfield, et. al. 1976; Gallagher and Starrfield 1978). In all cases we find that a TR results in mass ejection and the luminosity variations of this ejected material can reproduce the observed light curves of the fast and slow novae.

1980 ◽  
Vol 58 ◽  
pp. 635-640
Author(s):  
S. Starrfield

Over the past few years, significant advances have been made in our understanding of the nova outburst. The theoretical studies have shown not only that a thermonuclear runaway in the envelope of a white dwarf reproduces the gross features of the nova outburst (c.f.; Starrfield, Sparks, and Truran 1978, Sparks, Starrfield, and Truran, 1978, Gallagher and Starrfield 1978), but also made important predictions regarding the observed behavior of the outburst itself. The observational studies have provided us with new data concerning the evolution of the bolometric light curve of a nova during outburst, the elemental abundances in the ejecta, the formation of dust during the outburst, and the structure of nova binaries (c.f., Gallagher and Starrfield 1978).


1988 ◽  
Vol 108 ◽  
pp. 226-231
Author(s):  
Mario Livio

Classical nova (CN) and dwarf nova (DN) systems have the same binary components (a low-mass main sequence star and a white dwarf) and the same orbital periods. An important question that therefore arises is: are these systems really different ? (and if so, what is the fundamental difference ?) or, are these the same systems, metamorphosing from one class to the other ?The first thing to note in this respect is that the white dwarfs in DN systems are believed to accrete continuously (both at quiescence and during eruptions). At the same time, both analytic (e.g. Fujimoto 1982) and numerical calculations show, that when sufficient mass accumulates on the white dwarf, a thermonuclear runaway (TNR) is obtained and a nova outburst ensues (see e.g. reviews by Gallagher and Starrfield 1978, Truran 1982). It is thus only natural, to ask the question, is the fact that we have not seen a DN undergo a CN outburst (in about 50 years of almost complete coverage) consistent with observations of DN systems ? In an attempt to answer this question, we have calculated the probability for a nova outburst not to occur (in 50 years) in 86 DN systems (for which at least some of the orbital parameters are known).


1979 ◽  
Vol 53 ◽  
pp. 290-293
Author(s):  
G. Siegfried Kutter ◽  
Warren M. Sparks

We assume that the outburst of classical novae is the result of transfer of H-rich material from a red secondary star to a He or C/O white dwarf and the development of a thermonuclear runaway in the e-degenerate “base of the accreted H-rich envelope. Based on these assumptions, we have investigated this problem in several stages of increasing theoretical complexity and physical realism.


2004 ◽  
Vol 190 ◽  
pp. 300-306
Author(s):  
P. J. Meintjes

AbstractIt is shown here that the peculiar properties of AE Aqr can can be accounted for if the mass transfer from an evolved 0.7M⊙ secondary K4-5 star (qi ≈ 0.8, i.e. < 1) initiated when the orbital period of the binary was Porb,i ≈ 8.5 hours and the white dwarf period P*,i ≈ 1 hour. This resulted in a significant amount of orbital angular momentum being accreted by the white dwarf in an initial discless spin-up phase towards P* ≈ 0.1 Porb,i. This destabilized the mass transfer, resulting in a run-away mass transfer from the secondary that lasted for approximately 104 years, with the orbital period evolving to Porb ≈ 11 hours until a critical mass ratio of qcrit = 0.73 had been reached. In this phase the mass transfer from the secondary occurred at a rapid rate of approximately Ṁ2 ≈ 1020 g s-1, resulting in an accretion disc which spun-up the white dwarf to a period of approximately P* ≈ 33 s. For all q ≤ qcrit = 0.73 the mass transfer proceeded on the thermal time scale of the secondary star, i.e. at a much slower rate, resulting in the binary converging and forcing AE Aqr into the propeller phase. Applying stellar wind theory, this allow an estimate of the polar magnetic field of the secondary star, which is of the order of B° ≈ (1600 – 2000) G. It has been shown here that the duration of mass transfer phase q = qcrit → 0.67 (now) lasted for approximately tṀ2 ~ 107 years, similar to the spin-down time scale of the white dwarf, tsd = P*/P* ≈ 107 years. The propeller ejection of matter in the current phase results in the dissipation of mhd power of Lmhd ≈ 1034 erg s-1, probably channeled into mass ejection and non-thermal activity. This explains the non-thermal outbursts that are observed in radio wavelengths, and occasionally also in TeV energies, from AE Aqr.


1980 ◽  
Vol 5 ◽  
pp. 505-508
Author(s):  
Warren M. Sparks ◽  
G. Siegfried Kutter ◽  
Sumner Starrfield ◽  
James W. Truran

The mass and energy of nova ejecta are 10-5 - 10-4M⊚ and 1044 - 1045 ergs, respectively (Payne-Gaposchkin 1957). Comparison of these quantities with the mass (1 M⊚) and binding energy (1051 erg) of the erupting white dwarf implies that the nova outburst is a surface event. From an average of two or three novae detected each year, it is estimated that the rate of novae is 40-50 per year in our galaxy (Payne-Gaposchkin 1954) . Comparing this rate with a white dwarf birth rate of 2 per year in our galaxy (Weidemann 1968), we conclude that the nova outburst is a recurrent phenomenon (cf. Ford 1978). The recurrent nature also implies that the white dwarf cannot be drastically altered from event to event, thus giving further evidence for a surface event. The argument of recurrency become even stronger when it is realized that observations strongly indicate a close binary structure for the nova candidates—the white dwarf and a red companion (Kraft 1964).Kraft (1963) proposed the following hypothesis. The red companion overflows its Roche lobe and supplies hydrogen-rich material to an accretion disk around the white dwarf. This material eventually accretes onto the white dwarf, forming an hydrogen-rich envelope whose base is electron-degenerate. As the accretion proceeds, the temperature at the base of this envelope increases. This has little effect on the pressure, but greatly increases the thermonuclear energy generation. The thermonuclear energy generation, in turn, increases the temperature. This positive feedback loop leads to a thermonuclear runaway, which Kraft proposed as the cause of the nova outburst. A large number of theoretical studies based on this model have been carried out. These studies are presented in order of increasing realism and complexity in the following sections.


1996 ◽  
Vol 158 ◽  
pp. 45-46
Author(s):  
J. Smak

Dwarf nova outbursts provide an almost unique opportunity of getting an insight into the nature of viscosity in accretion disks or, within the α- disk approach, of putting some constraints on α. In particular, the strong dependence of the viscous time-scale on viscosity itself permits us to estimate a almost directly from the observed time-scales. In the case of the hot branch of the ∑ — Te relation, the most reliable estimates (αhot) are based on the rate of decline following the dwarf nova outburst. From a comparison with model light curves calculated with different αs one gets: αhot ≈ 0.2(e.g. Smak 1984b). An independent, but much cruder, estimate can be obtained from the widths of normal outbursts, by assuming that the duration of an outburst represents the travel time of an instability wave across the disk. The result is similar: αhot ≈ 0.2 (Gicger 1987).


1999 ◽  
Vol 191 ◽  
pp. 481-486
Author(s):  
Martin Asplund

The born-again giant Sakurai's object is currently experiencing its second stage as an AGB-star. Furthermore, Sakurai's object has shown an unprecedented rapid stellar evolution since discovery in 1996, both in terms of a continued cooling of the photosphere and spectacular changes in chemical composition on a time-scale of a mere few months. The surface cooling and abundance alterations of H, Li and the s-elements are the direct consequences of the expansion, mixing and nucleosynthesis which has ensued as a result of a final He-shell flash occurring while the star was descending the white dwarf cooling track. Sakurai's object shows striking similarities with the R CrB stars in both chemical composition and visual variability.


2018 ◽  
Vol 619 ◽  
pp. A121 ◽  
Author(s):  
Jordi Casanova ◽  
Jordi José ◽  
Steven N. Shore

Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass main sequence star onto either a CO or ONe white dwarf. The material accumulates for 104–105 yr until ignition under degenerate conditions, resulting in a thermonuclear runaway. The nuclear energy released produces peak temperatures of ∼0.1–0.4 GK. During these events, 10−7−10−3 M⊙ enriched in intermediate-mass elements, with respect to solar abundances, are ejected into the interstellar medium. However, the origin of the large metallicity enhancements and the inhomogeneous distribution of chemical species observed in high-resolution spectra of ejected nova shells is not fully understood. Aims. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities that operate at the core-envelope interface can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, such multidimensional simulations have been performed for a small number of cases and much of the parameter space remains unexplored. Methods. We investigated the dredge-up, driven by Kelvin-Helmholtz instabilities, for white dwarf masses in the range 0.8–1.25 M⊙ and different core compositions, that is, CO-rich and ONe-rich substrates. We present a set of five numerical simulations performed in two dimensions aimed at analyzing the possible impact of the white dwarf mass, and composition, on the metallicity enhancement and explosion characteristics. Results. At the time we stop the simulations, we observe greater mixing (∼30% higher when measured in the same conditions) and more energetic outbursts for ONe-rich substrates than for CO-rich substrates and more massive white dwarfs.


Sign in / Sign up

Export Citation Format

Share Document