scholarly journals Radiation Hydrodynamics in Pulsating Stars

1986 ◽  
Vol 89 ◽  
pp. 36-52
Author(s):  
Robert F. Stellingwerf

The topic of this review encompasses all aspects of pulsation theory, for the radiation field is never negligible in stellar stability problems, on the contrary, it is usually the primary destabilizing factor through its thermal effects, and modifies the envelope structure and stability through its dynamic effects. The impossibility of a general review of such a broad topic is apparent, and I will concentrate in this talk on the most striking aspect of pulsating stars: nonlinear effects in the outer layers. To focus the discussion, I will address primarily two problems of current interest: shock development driven by the pulsating velocity field, and time dependent turbulence in the ionization zones. The emphasis will be on methodology rather than specific problems and developments.

1993 ◽  
Vol 137 ◽  
pp. 572-574 ◽  
Author(s):  
E.A. Dorfi ◽  
M.U. Feuchtinger ◽  
S. Höfner

The cool extended atmospheres of late type giants are sites where dust formation takes place. Radiation pressure on the dust grains is an important force for driving the slow but massive winds observed in such objects. Existing calculations of dust driven stellar winds (e.g. Bowen 1988, Fleischer et al. 1991) suffer from the fact that they include approximations at various levels for different parts of the problem like the hydrodynamics or the dust formation. Furthermore they do not include time-dependent radiative transfer.In order to overcome these insufficiencies we plan to calculate self-consistent models of dust driven winds with a full description of both the radiation hydrodynamics and the time-dependent dust formation. As a first step, however, we concentrate our investigations on the self-consistent description of the radiation hydrodynamics adopting only a simple description of the dust opacities.


2006 ◽  
Vol 2 (S239) ◽  
pp. 314-316 ◽  
Author(s):  
Achim Weiss ◽  
Martin Flaskamp

AbstractThe non-local, time-dependent convection theory of Kuhfuß (1986) in both its one- and three-equation form has been implemented in the Garching stellar evolution code. We present details of the implementation and the difficulties encountered. Specific test cases have been calculated, among them a 5 M⊙ star and the Sun. These cases point out deficits of the theory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.


2004 ◽  
Vol 03 (01) ◽  
pp. 117-144 ◽  
Author(s):  
AKIRA YOSHIMORI

This article reviews microscopic development of time dependent functional method and its application to chemical physics. It begins with the formulation of density functional theory. The time dependent extension is discussed after the equilibrium formulation. Its application is explained by solvation dynamics. In addition, it reviews studies of nonlinear effects on polar liquids and simple mixtures.


2020 ◽  
Vol 498 (1) ◽  
pp. 223-234
Author(s):  
Sedighe Sajadian ◽  
Richard Ignace

ABSTRACT We study the microlensing of non-radially pulsating (NRP) stars. Pulsations are formulated for stellar radius and temperature using spherical harmonic functions with different values of l, m. The characteristics of the microlensing light curves from NRP stars are investigated in relation to different pulsation modes. For the microlensing of NRP stars, the light curve is not a simple multiplication of the magnification curve and the intrinsic luminosity curve of the source star, unless the effect of finite source size can be ignored. Three main conclusions can be drawn from the simulated light curves. First, for modes with m ≠ 0 and when the viewing inclination is more nearly pole-on, the stellar luminosity towards the observer changes little with pulsation phase. In this case, high-magnification microlensing events are chromatic and can reveal the variability of these source stars. Secondly, some combinations of pulsation modes produce nearly degenerate luminosity curves (e.g. (l, m) = (3, 0), (5, 0)). The resulting microlensing light curves are also degenerate, unless the lens crosses the projected source. Finally, for modes involving m = 1, the stellar brightness centre does not coincide with the coordinate centre, and the projected source brightness centre moves in the sky with pulsation phase. As a result of this time-dependent displacement in the brightness centroid, the time of the magnification peak coincides with the closest approach of the lens to the brightness centre as opposed to the source coordinate centre. Binary microlensing of NRP stars and in caustic-crossing features are chromatic.


2004 ◽  
Vol 219 ◽  
pp. 385-389 ◽  
Author(s):  
Inga Kamp ◽  
Fatima Sammar

The chemistry of circumstellar disks around young (a few 10 Myr) solar-type stars is mainly driven by the strong UV radiation field of the central star. As a starting point for a detailed UV radiation field, the rocket and satellite observations of the solar chromosphere are used and scaled according to the time-dependent behaviour of stellar activity. The disk chemistry as well as dust and gas temperatures are then derived self-consistently from the model. The results of these calculations can be used for the identification of the most promising gas tracers as well as for the interpretation of present and future observations.


Sign in / Sign up

Export Citation Format

Share Document