scholarly journals Angular distribution and forward peaking of laser produced plasma ions

2005 ◽  
Vol 23 (2) ◽  
pp. 131-135 ◽  
Author(s):  
M. SHAHID RAFIQUE ◽  
M. KHALEEQ-UR-RAHMAN ◽  
MUHAMMAD SHAHBAZ ANWAR ◽  
FARYAAL MAHMOOD AFSHAN ASHFAQ ◽  
KHURRAM SIRAJ

This paper represents the results of a study of angular distribution of laser produced ions (LPI) of Al, Cu, and Ag. The angular distribution is studied by CR-39 (SSNTD) and ion assisted sputtering experiments. A Q-Switched Nd:YAG laser (1.064 μm, 1.1 MW) with 10 mJ pulsed energy was used to produce the Ag ions, which were detected by CR-39 detector mounted at −17.5°, 0°, 17.5°, 30°, 60°, and 90° from the normal to the target placed at a distance of 9 cm from the target. Etched CR-39 detectors then observed under the Motic DMB Series optical microscope. A bunch of ions was detected along the normal of target due to self generated collimation of ions. This is termed as Forward Peaking of Laser Produced Ions. Similar results were also observed from sputtering of polished Al substrate by laser produced ions of Cu and Sputtering of polished Cu substrate by laser produced ions of Al. The surface morphology of the ion irradiated samples were observed under the Scanning Electron microscope (SEM) S 300 Hi-tech. Formation of a circular damage on the surface of the substrates by irradiation conforms the ions collimation along the normal or Forward Peaking of ions.

2012 ◽  
Vol 457-458 ◽  
pp. 270-273
Author(s):  
Yi You Tu ◽  
Guo Zhong Li

Effect of superheat and initial rolling temperature on the morphology and distribution of sulfide in non quenched and tempered free cutting steel 30MnVS has been studied by optical microscope and scanning electron microscope. Results show that proper superheat and initial rolling temperature can turn rod-shaped sulfide into massive or globular sulfide,to alleviate sulfide segregation and pro-eutectoid ferrite distribution along the boundary of pearlite clusters in 30MnVS , increase the intragranular ferrite content and optimize the structure of continuous casting slab.


2016 ◽  
Vol 850 ◽  
pp. 101-106 ◽  
Author(s):  
Shu Mei Li ◽  
Jian Jun Yang ◽  
Wei Dong Zhang ◽  
August Chang ◽  
Cai Xia Zhang ◽  
...  

Premature fracture of an axle under torsional load occurred after a tracked military tank had experienced field testing for only 80 kilometers. Visual metallographic examinations were performed with optical microscope (OM) and scanning electron microscope (SEM). The investigation demonstrates that the premature fracture is caused by metallurgical problems inside the axle where the primary and secondary cracks originate, propagate, and eventually result in final catastrophic rupture through torsional fatigue. The failure mechanism is summarized and improvement of the fatigue lifetime for the axle is recommended.


2019 ◽  
Vol 22 (4) ◽  
pp. 277-282
Author(s):  
Salam A. Mohammed ◽  
Rahimi M. Yusop ◽  
Mohammed Abdulsattar Mohammed ◽  
Rasheed Abed Mohammed ◽  
Dina S. Ahmed ◽  
...  

Poly(vinyl chloride) photodecomposition films that contains melamine Schiff base (0.5% by weight) as photostabilizers upon preservation with an ultraviolet light (UV) was investigated. The photodecomposition rate constant was reduced significantly in existence of melamine Schiff base compared to PVC (blank). The Schiff base 1 was found to most effective additive in PVC photostabilization films. Photodecomposition rate content for PVC films containing Schiff base 1 was found to be 5 × 10-3 sec-1 compared to 8.7 × 10-3 sec-1 for blank film. Ultraviolet radiation aging behaviors of PVC films were studied through leaching test by measuring the degree of migration. The surface morphology of PVC films was inspected by scanning electron microscope.


2022 ◽  
Vol 905 ◽  
pp. 30-37
Author(s):  
Shu Lan Zhang ◽  
Xiao Dan Zhang ◽  
Hai Feng Xu ◽  
Chang Wang

Effect of microstructure size and type on the hardness for the duplex steel were disclosed by using of optical microscope (OM), scanning electron microscope (SEM) and nanoindenter for the samples hot compressed under different temperature with reduction of 10%, 30%, 50% and 70%. OM and SEM were used to measure the average martensite lamellar width, space and indenter morphology. nanoindenter test characterized the microstructure hardness for the samples under different process. Experiment results show that martensite hardness for the sample hot compressed at 950°C has larger diversity than that of sample hot compressed at 1200°C. The martensite hardness fluctuation range for the sample compressed at 950°C is almost from about 7GPa to 12GPa, while, for the sample compressed at 1200°C, the fluctuation range is basically from about 9GPa to 12GPa. However, the average hardness for the samples hot compressed at 950°C is comparably smaller, which is related with lower quench temperature. The larger martensite hardness fluctuation is mainly related with induced ferrite formation and finer martensite lamellar width. For the ferrite phase, the hardness fluctuation range is lower.


2021 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Mihailo Mrdak ◽  
Darko Bajić ◽  
Darko Veljić ◽  
Marko Rakin

In this paper we will describe the process of the deposition of thick layers of VPS-Ti coating, which is used as a bonding layer for the upper porous Ti coatings on implant substrates. In order to deposit the powder, we used HÖGANÄS Ti powder labelled as AMPERIT 154.086 -63 µm. In order to test the mechanical properties and microstructure of the VPS-Ti coating, the powder was deposited on Č.4171 (X15Cr13 EN10027) steel substrates. Mechanical tests of the microhardness of the coating were performed by the Vickers hardness test method (HV0.3) and tensile strength by measuring the force per unit area (MPa). The microhardness of the coating is 159 HV0.3, which is consistent with the microstructure. The coating was found to have a good bond strength of 68 MPa. The morphology of the powder particles was examined on a scanning electron microscope. The microstructure of the coating, both when deposited and etched, was examined with an optical microscope and a scanning electron microscope. By etching the coating layers, it was found that the structure is homogeneous and that it consists of a mixture of low-temperature and high-temperature titanium phases (α-Ti + β-Ti). Our tests have shown that the deposited layers of Ti coating can be used as a bonding layer for porous Ti coatings in the production of implants.


1971 ◽  
Vol 49 (3) ◽  
pp. 371-372 ◽  
Author(s):  
Y. Hiratsuka

Two types of surface markings on the aeciospores of five pine stem rusts occurring in Canada were observed under a scanning electron microscope. Spores of four species, Endocronartium harknessii (J. P. Moore) Y. Hiratsuka (= Peridermium harknessii J. P. Moore), Cronartium coleosporioides Arth. (= P. stalactiforme Arth. & Kern), C. comptoniae Arth., and C. ribicola J. C. Fisch., had annulated processes with five to seven layers and each spore had a smooth area. The smooth area was at the same level as the top layer of the processes. Each species could be distinguished by the shape and size of its processes. Spores of Cronartium comandrae Pk. had no smooth areas and had obtuse or cuspidate processes with no annulations. Different ontogenies were apparent for the two types of spore surface markings.


2015 ◽  
Vol 3 (25) ◽  
pp. 5058-5069 ◽  
Author(s):  
J. A. Goding ◽  
A. D. Gilmour ◽  
P. J. Martens ◽  
L. A. Poole-Warren ◽  
R. A. Green

Scanning electron microscope image of surface morphology of conducting polymer PEDOT doped with bioactive molecules.


Sign in / Sign up

Export Citation Format

Share Document