scholarly journals Electron acceleration by whistler pulse in high-density plasma

2017 ◽  
Vol 35 (3) ◽  
pp. 386-390
Author(s):  
A.K. Singh

AbstractThe acceleration of an electron by the ponderomotive force of a Gaussian whistler pulse in a magnetized high-density quantum plasma obeying Fermi–Dirac distribution is studied using the recently developed quantum hydrodynamic model. Effective acceleration takes place when the peak whistler amplitude exceeds a threshold value, and the whistler frequency is greater than the cyclotron frequency. The threshold amplitude decreases with ratio of plasma frequency to electron cyclotron frequency. The electron is accelerated at velocities of about twice the group velocity of the whistler.

2016 ◽  
Vol 34 (4) ◽  
pp. 764-771 ◽  
Author(s):  
N. S. Rathore ◽  
P. Kumar

AbstractPonderomotive non-linearities arising by propagation of a linearly polarized laser beam through high-density quantum plasma are studied. The intense laser beam sets the plasma electrons in quiver motion and consequently ponderomotive non-linearity sets in leading to electron density perturbation inside the plasma. The interaction formalism has been built using the quantum hydrodynamic model. Laser beam traversing through high-density quantum plasma acquires an additional focusing tendency due to the perturbation induced by ponderomotive force in the plasma density. The ponderomotive force causes the beam to focus and the quantum effects contribute in focusing. The transverse magnetization of quantum plasma enhances the self-focusing and increase in magnetic field limits the spot size.


1995 ◽  
Vol 54 (2) ◽  
pp. 173-183 ◽  
Author(s):  
H. C. Chen

A general treatment of ion resonance instability for a non-neutral plasma column is performed using a macroscopic cold-fluid-Maxwell model. The azimuthal motion of the plasma components has an important influence on the behaviour of the instability. When the electrons are in slow rotational equilibrium, the instability occurs in both slow and fast ion rotational equilibrium. However, there is stability when the electrons are in fast rotational equilibrium except that the l = 1 mode becomes unstable and independent of plasma rotation. The kink (l = 1) mode only occurs when the plasma column boundary exceeds a certain threshold value that depends on the ratio of the plasma frequency to the cyclotron frequency.


2017 ◽  
Vol 35 (2) ◽  
pp. 252-258 ◽  
Author(s):  
A.K. Singh ◽  
S. Chandra

AbstractThe possibilities of electron acceleration by ponderomotive force of a circularly polarized laser pulse in magnetized quantum plasma have been explored. The basic mechanism involves acceleration of electron by the axial gradient in the ponderomotive potential of the laser. The quantum effects have been taken into account for a high-density plasma. The ponderomotive force of the laser is resonantly enhanced when Doppler up-shifted laser frequency equals the cyclotron frequency.


2019 ◽  
Vol 37 (01) ◽  
pp. 5-11
Author(s):  
Punit Kumar ◽  
Shiv Singh ◽  
Nafees Ahmad

AbstractStudy of even harmonic generation resulting from propagation of whistler pulse in homogeneous high-density quantum plasma immersed in an externally applied magnetic field, using the recently developed quantum hydrodynamic model is presented. The effects of quantum Bohm potential, quantum statistical pressure, and electron spin have been taken into account. The field amplitude of even harmonic of the whistler with respect to fundamental wave and the conversion efficiency for phase-mismatch has been analyzed. The conversion efficiency of harmonic radiation depends on the plasma electron density, magnetic field strength as well as the intensity of whistler pulse. The efficiency increases significantly with an increase in plasma density, magnetic field and whistler wave intensity. Higher conversion efficiency is observed in degenerate plasma for lower values of the static magnetic field as compared with classical plasma.


2021 ◽  
Vol 14 (2) ◽  
pp. 155-160

Abstract: We investigate the spectra of high-frequency electrostatic surface electron plasmon oscillations propagating normal to a dc-magnetic field. These oscillations are supported by two identical magnetoplasma slabs separated by a vacuum slab. Propagation characteristics of surface magnetoplasma oscillations and their coupling are studied by simultaneously solving the homogeneous system of equations obtained by matching the electrostatic fields at the interfaces together with the warm plasma dielectric function of upper hybrid waves. We demonstrate the existence of two propagating magnetoplasma electrostatic surface modes (backward and forward modes). The backward mode emerges at frequency ω=ω_uh=√(ω_pe^2+ω_ce^2 ), where ω_pe and ω_ce are the electron plasma frequency and the electron cyclotron frequency, respectivily, and the forward propagating mode emerges at a lower frequency ω=ω_uh-ω_pe. The forward and backward surface modes become coupled and form a single mode at upper hybrid resonance quasi-static value ω=ω_uh/√2. Keywords: Upper hybrid modes, Plasma slab waveguide, Coupled plasmon surface modes.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 016002
Author(s):  
Punit Kumar ◽  
Nisha Singh Rathore

Abstract Relativistic and ponderomotive nonlinearities arising by the passage of a linearly polarized laser beam through a partially stripped magnetized quantum plasma are analyzed. The interaction formalism has been developed using the recently developed quantum hydrodynamic model. The effects associated with the Fermi pressure, quantum Bohm potential and electron spin have been incorporated. A nonparaxial, non-linear wave equation has been obtained by the use of source dependent expansion technique and spot size has been evaluated. The nonlinear relativistic self-focusing tends to focus the beam while the ponderomotive nonlinearity tends to defocus. The effect of magnetization and quantum effects on the spot size and the beam power have been studied.


Sign in / Sign up

Export Citation Format

Share Document