scholarly journals Effect of pre-plasma on the ion acceleration by intense ultra-short laser pulses

2018 ◽  
Vol 36 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Parvin Varmazyar ◽  
Saeed Mirzanejhad ◽  
Taghi Mohsenpour

AbstractIn the interaction of short-laser pulses with a solid density target, pre-plasma can play a major role in ion acceleration processes. So far, complete analysis of pre-plasma effect on the ion acceleration by ultra-short laser pulses in the radiation pressure acceleration (RPA) regime has been unknown. Then the effect of pre-plasma on the ion acceleration efficiency is analyzed by numerical results of the particle-in-cell simulation in the RPA regime. It is shown that, for long-laser pulses (τp > 50 fs), the presence of pre-plasma makes a destructive effect on ion acceleration while it may have a contributing effect for short-laser pulses (τp < 50 fs). Therefore, the 35 fs (20 fs) laser pulse can accelerate ions up to 40 MeV (55 eV), which is almost two (three) times larger in energy rather than use of a 100 fs pulse with the same pre-plasma scale length.

2015 ◽  
Vol 33 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Saeed Mirzanejhad ◽  
Farshad Sohbatzadeh ◽  
Atefeh Joulaei ◽  
Javad Babaei ◽  
Khadijeh Shahabei

AbstractIn this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness.


2018 ◽  
Vol 25 (8) ◽  
pp. 083113 ◽  
Author(s):  
M. Tayyab ◽  
S. Bagchi ◽  
J. A. Chakera ◽  
R. A. Khan ◽  
P. A. Naik

2019 ◽  
Vol 34 (34) ◽  
pp. 1943015
Author(s):  
D. M. Farinella ◽  
M. Stanfield ◽  
N. Beier ◽  
T. Nguyen ◽  
S. Hakimi ◽  
...  

Thin film compression to the single-cycle regime combined with relativistic compression offers a method to transform conventional ultrafast laser pulses into attosecond X-ray laser pulses. These attosecond X-ray laser pulses are required to drive wakefields in solid density materials which can provide acceleration gradients of up to TeV/cm. Here we demonstrate a nearly 99% energy efficient compression of a 6.63 mJ, 39 fs laser pulse with a Gaussian mode to 20 fs in a single stage. Further, it is shown that as a result of Kerr-lensing, the focal spot of the system is slightly shifted on-axis and can be recovered by translating the imaging system to the new focal plane. This implies that with the help of wave-front shaping optics the focusability of laser pulses compressed in this way can be partially preserved.


2003 ◽  
Vol 21 (4) ◽  
pp. 573-581 ◽  
Author(s):  
LAURENT POMMIER ◽  
ERIK LEFEBVRE

Energetic protons are emitted from thin foils irradiated by short laser pulses at high intensities. One- and two-dimensional particle-in-cell simulations have been used to study the influence of initial proton position, laser irradiance, and target density profile on this ion acceleration. These simulations bring additional support to the idea that protons are mainly accelerated from the rear side of the target, by electrostatic fields associated with hot electrons escaping into vacuum. The density scale length at the front of the target appears to be the main parameter to increase proton energies when the laser irradiance is fixed.


2007 ◽  
Vol 3 (1-2) ◽  
pp. 297-301 ◽  
Author(s):  
F. Zamponi ◽  
A. Lübcke ◽  
T. Kämpfer ◽  
I. Uschmann ◽  
E. Förster ◽  
...  
Keyword(s):  
X Ray ◽  

2017 ◽  
Vol 26 (3) ◽  
pp. 253
Author(s):  
O. Buganov ◽  
S. Tikhomirov ◽  
E. Barbarchik ◽  
M. Korjik ◽  
A. Fedorov ◽  
...  

In this study, we investigate  transient phenomena in synthetic diamonds  obtained by High Pressure High Temperature and Chemical Vapor Deposition methods. Study was aimed at searching for inorganic crystalline media combining ionizing radiation detecting properties and non-linear absorption of ultra-short laser pulses. The nonlinear pump-and-probe optical absorption technique with of 140 fs laser pulses was used to study the effects.


2019 ◽  
Vol 37 (4) ◽  
pp. 346-353
Author(s):  
D. Sangwan ◽  
O. Culfa ◽  
C.P. Ridgers ◽  
S. Aogaki ◽  
D. Stutman ◽  
...  

AbstractWe present results of 2D particle-in-cell (PIC) simulations of carbon ion acceleration by 10 petawatt (PW) laser pulses, studying both circular polarized (CP) and linear polarized (LP) pulses. We carry out a thickness scanning of a solid carbon target to investigate the ideal thickness for carbon ion acceleration mechanisms using a 10 PW laser with an irradiance of 5 × 1022 W cm−2. The energy spectra of carbon ions and electrons and their temperature are studied. Additionally, for the carbon ions, their angular divergence is studied. It is shown that the ideal thickness for the carbon acceleration is 120 nm and the cutoff energy for carbon ions is 5 and 3 GeV for CP and LP pulses, respectively. The corresponding carbon ions temperature is ~1 and ~0.75 GeV. On the other hand, the energy cutoff for the electrons is ~500 MeV with LP and ~400 MeV with CP laser pulses. We report that the breakout afterburner mechanism is most likely causing the acceleration of carbon ions to such high energies for the optimal target thickness.


Author(s):  
W. P. Wang ◽  
X. M. Zhang ◽  
X. F. Wang ◽  
X. Y. Zhao ◽  
J. C. Xu ◽  
...  

AbstractThe effects of ion motion on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration are investigated by analytical modeling and particle-in-cell simulations. Studies show that the rear part of the transmitted pulse modulated by ion motion is sharper compared with the case of the electron shutter only. In this study, the ions further modulate the short-cycle pulses transmitted. A 3.9 fs laser pulse with an intensity of $1.33\times 10^{21}\ {\rm W}\ {\rm cm}^{-2}$ is generated by properly controlling the motions of the electron and ion in the simulations. The short-cycle laser pulse source proposed can be applied in the generation of single attosecond pulses and electron acceleration in a small bubble regime.


Sign in / Sign up

Export Citation Format

Share Document