scholarly journals Haptic Perception with an Articulated, Sensate Robot Hand

Robotica ◽  
1992 ◽  
Vol 10 (6) ◽  
pp. 497-508 ◽  
Author(s):  
Sharon A. Stansfield

SUMMARYIn this paper we present a series of haptic exploratory procedures, or EPs, implemented for a multi-fingered, articulated, sensate robot hand. These EPs are designed to extract specific tactile and kinesthetic information from an object via their purposive invocation by an intelligent robotic system. Taken together, they form an active robotic touch perception system to be used both in extracting information about the environment for internal representation and in acquiring grasps for manipulation. The theory and structure of this robotic haptic system is based upon models of human haptic exploration and information processing.The haptic system presented utilizes an integrated robotic system consisting of a PUMA 560 robot arm, a JPL/Stanford robot hand, with joint torque sensing in the fingers, a wrist force/torque sensor, and a 256 element, spatially-resolved fingertip tactile array. We describe the EPs implemented for this system and provide experimental results which illustrate how they function and how the information which they extract may be used. In addition to the sensate hand and arm, the robot also contains structured-lighting vision and a Prolog-based reasoning system capable of grasp generation and object categorization. We present a set of simple tasks which show how both grasping and recognition may be enhanced by the addition of active touch perception.

2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Alisya Masturoh ◽  
Bambang Hendriya Guswanto ◽  
Triyani Triyani

The inverse kinematical problem of a robot arm is a problem to find some appropriate joint configurations for a pair of position and direction of a robot hand which is represented by a polynomial equations system. The system is solved by employing Groebner basis notion. Thus, the appropriate joint configurations for a pair of position and direction of the robot hand are obtained.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


2013 ◽  
Vol 465-466 ◽  
pp. 1375-1379
Author(s):  
Hanafiah Yussof ◽  
Zahari Nur Ismarrubie ◽  
Ahmad Khushairy Makhtar ◽  
Masahiro Ohka ◽  
Siti Nora Basir

This paper presents experimental results of object handling motions to evaluate tactile slippage sensation in a multi fingered robot arm with optical three-axis tactile sensors installed on its two hands. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.


2015 ◽  
Vol 12 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Francisco Martín ◽  
Carlos E. Agüero ◽  
José M. Cañas

Robots detect and keep track of relevant objects in their environment to accomplish some tasks. Many of them are equipped with mobile cameras as the main sensors, process the images and maintain an internal representation of the detected objects. We propose a novel active visual memory that moves the camera to detect objects in robot's surroundings and tracks their positions. This visual memory is based on a combination of multi-modal filters that efficiently integrates partial information. The visual attention subsystem is distributed among the software components in charge of detecting relevant objects. We demonstrate the efficiency and robustness of this perception system in a real humanoid robot participating in the RoboCup SPL competition.


2008 ◽  
Vol 2 (5) ◽  
pp. 360-367
Author(s):  
Ping Han ◽  
◽  
Hiroyuki Kojima ◽  
Lingfang Huang ◽  
Saputra Meruadi ◽  
...  

In this study, the grasp transfer control system by a Cartesian coordinate two-link robot arm with a prototype robot hand is presented. The prototype robot hand consists of permanent-magnet-type stepping motors, gears and plate springs. The grasp force control of the robot hand is performed by a feedforward control of the stepping motors based on the dimension of a grasped object. The Cartesian coordinate two-link robot arm consists of ball screws and hybrid stepping motors. Then the numerical simulations and experiments of the grasp transfer control have been carried out, and it is confirmed that the grasp transfer control could be successfully performed, and the grasp force could be accurately controlled among the motion control of the Cartesian coordinate two-link robot arm.


Robotica ◽  
2019 ◽  
Vol 37 (6) ◽  
pp. 1090-1103 ◽  
Author(s):  
Mitsunori Uemura ◽  
Yuki Mitabe ◽  
Sadao Kawamura

SummaryIn this paper, we propose a novel mechanism to compensate for gravity and the gripping force in a hand-arm robot. This mechanism compensates for the gravitational torque produced by an object gripped by the hand-arm robot. The gripping force required for the robot hand to prevent the object from dropping is also simultaneously compensated for. This mechanism requires only one actuator placed on the shoulder part of the robot. Therefore, this mechanism can reduce the torque requirement of joint actuators and lower the weight of the robot. The gear ratio of the reduction gears in each robot joint can then also be reduced. These advantages are critical for future robots that perform tasks in unstructured environments and collaborate with humans. We carried out experiments with a 6-DoF robot arm having a 1-DoF gripper to demonstrate the effectiveness of the proposed mechanism.


Author(s):  
K. Kosuge ◽  
H. Takeuchi ◽  
K. Furuta

Sign in / Sign up

Export Citation Format

Share Document