scholarly journals Air jets imaging tactile sensing device for automation applications

Robotica ◽  
1995 ◽  
Vol 13 (5) ◽  
pp. 521-529 ◽  
Author(s):  
R. Benhadj ◽  
B. Dawson

SummaryThis paper details the design principles of operation of a pneumatic proximity-to-tactile sensing device for part handling and recognition in a flexible manufacturing environment. The sensing device utilises a densely packed line array of piezoresistive pressure sensors, providing continuous variable outputs. The sensing plane of the device incorporates a corresponding line array of air jets which develop an air cushion when striking a target of interest. The back pressure levels from these air jets form the basis for the task of target detection and recognition.

Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2779-2786 ◽  
Author(s):  
Jing Li ◽  
Santiago Orrego ◽  
Junjie Pan ◽  
Peisheng He ◽  
Sung Hoon Kang

We report a facile sacrificial casting–etching method to synthesize nanoporous carbon nanotube/polymer composites for ultra-sensitive and low-cost piezoresistive pressure sensors.


2000 ◽  
Vol 10 (2) ◽  
pp. 204-208 ◽  
Author(s):  
A Merlos ◽  
J Santander ◽  
M D Alvarez ◽  
F Campabadal

2021 ◽  
Author(s):  
Ang Li ◽  
Ce Cui ◽  
Weijie Wang ◽  
Yue Zhang ◽  
Jianyu Zhai ◽  
...  

Abstract Graphene is complexed with cellulose fibers to construct 3D aerogels, which is generally considered to be an environmentally friendly and simple strategy to achieve wide sensing, high sensitivity and low detection of wearable piezoresistive pressure sensors. Here, graphene is incorporated into waste paper fibers with cellulose as the main component to prepare graphene coated waste paper aerogel (GWA) using a simple “filtration-oven drying” method under atmospheric pressure. The GWA was further annealed to obtain the carbonized graphene coated waste paper aerogel (C-GWA) to achieve low density and excellent resilience. The result shows that the C-GWA has a rough outer surface due to the 3D structure formed by interpenetrated fibers and the carbon skeleton with wrinkles. The sensor based on GCA shows low density (25mg/cm3), a wide detection range of 0-132 kPa, an ultra-low detection limit of 2.5 Pa (a green bean, ≈ 53.4 mg), and a high sensitivity of 31.6 kPa− 1. In addition, the sensor based on C-GWA with the excellent performance can be used to detect human motions including the pulse of the human body, cheek blowing and bending of human joints. The result indicates that the sensor based on C-GWA shows great potential for wearable electronic products.


Small ◽  
2016 ◽  
Vol 12 (28) ◽  
pp. 3827-3836 ◽  
Author(s):  
Zongrong Wang ◽  
Shan Wang ◽  
Jifang Zeng ◽  
Xiaochen Ren ◽  
Adrian J. Y. Chee ◽  
...  

1999 ◽  
Author(s):  
Todd F. Miller ◽  
David J. Monk ◽  
Gary O’Brien ◽  
William P. Eaton ◽  
James H. Smith

Abstract Surface micromachining is becoming increasingly popular for microelectromechanical systems (MEMS) and a new application for this process technology is pressure sensors. Uncompensated surface micromachined piezoresistive pressure sensors were fabricated by Sandia National Labs (SNL). Motorola packaged and tested the sensors over pressure, temperature and in a typical circuit application for noise characteristics. A brief overview of surface micromachining related to pressure sensors is described in the report along with the packaging and testing techniques used. The electrical data found is presented in a comparative manner between the surface micromachined SNL piezoresistive polysilicon pressure sensor and a bulk micromachined Motorola piezoresistive single crystal silicon pressure sensor.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000373-000378
Author(s):  
R. Otmani ◽  
N. Benmoussa ◽  
K. Ghaffour

Piezoresistive pressure sensors based on Silicon have a large thermal drift because of their high sensitivity to temperature (ten times more sensitive to temperature than metals). So the study of the thermal behavior of these sensors is essential to define the parameters that cause the drift of the output characteristics. In this study, we adopted the behavior of 2nd degree gauges depending on the temperature. Then we model the thermal behavior of the sensor and its characteristics.


Sign in / Sign up

Export Citation Format

Share Document