Simultaneous base and tool calibration for self-calibrated parallel robots

Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Guilin Yang ◽  
I-Ming Chen ◽  
Song Huat Yeo ◽  
Wee Kiat Lim

In this paper, we focus on the base and tool calibration of a self-calibrated parallel robot. After the self-calibration of a parellel robot by using the built-in sensors in the passive joints, its kinematic transformation from the robot base to the mobile platform frame can be computed with sufficient accuracy. The base and tool calibration, hence, is to identify the kinematic errors in the fixed transformations from the world frame to the robot base frame and from the mobile platform frame to the tool (end-effector) frame in order to improve the absolute positioning accuracy of the robot. Using the mathematical tools from group theory and differential geometry, a simultaneous base and tool calibration model is formulated. Since the kinematic errors in a kinematic transformation can be represented by a twist, i.e. an element of se(3), the resultant calibration model is simple, explicit and geometrically meaningful. A least-square algorithm is employed to iteratively identify the error parameters. The simulation example shows that all the preset kinematic errors can be fully recovered within three to four iterations.

Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 657-667 ◽  
Author(s):  
Abraham Gonzalez-Hernandez ◽  
Eduardo Castillo-Castaneda

SUMMARYThis work presents a methodology using image analysis to estimate the experimental stiffness of a parallel robot, Parallix LKF-2040, a 3-degree-of-freedom manipulator. The proposed methodology has a simple implementation and can be applied to different architectures of parallel robots. This methodology uses image analysis and camera calibration techniques to estimate compliant displacements of mobile platform produced by several loads at the end effector level, and calculate stiffness in a specific position of mobile platform. Experimental results are presented for different positions within the workspace.


Author(s):  
S El Hraiech ◽  
AH Chebbi ◽  
Z Affi ◽  
L Romdhane

This work deals with the estimation and the sensitivity analysis of the 3-UPU parallel robot error. Based on the Newton–Euler formalism, the robot dynamic model is given in a closed form. This model is validated by the software ADAMS. Using the interval analysis method, a new algorithm is proposed, which estimates the errors in the motion of the end-effector and the errors in the actuator forces as a function of the design parameters uncertainties. The obtained results show that the kinematic errors are minimal at the workspace center. Moreover, these errors increase as the platform moves along the vertical axis. It is also shown that kinematic errors in the actuator joints are the most influential parameters on the manipulator accuracy. Therefore, using actuators with a higher accuracy can highly reduce the errors in motion of the platform.


2021 ◽  
Author(s):  
Utkarsh A. Mishra ◽  
Stéphane Caro

Abstract Kinematic analysis of under-constrained Cable-Driven Parallel Robots has been a topic of interest because of the inherent coupling between the loop-closure and static equilibrium equations. The paper proposes an unsupervised neural network algorithm to perform real-time forward geometrico-static analysis of such robots in a suspended configuration under the action of gravity. The formulation determines a non-linear function approximation to model the problem and proves to be efficient in solving for consecutive and close waypoints in a path. The methodology is applied on a six-degree-of-freedom (6-DOF) spatial under-constrained suspended cable-driven parallel robot. Specific comparison results to show the effectiveness of the proposed method in tracking a given path and degree of constraint satisfaction are presented against the results obtained from non-linear least-square optimization.


Author(s):  
Jun-Mu Heo ◽  
Sung-hyun Choi ◽  
Kyoung-Su Park

Cable driven parallel robots (CDPRs) are a class of parallel robots in which the rigid links are replaced by cables. It consists of a moving end-effector and a number of active cables connected to the end-effector.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3403 ◽  
Author(s):  
Rodriguez-Barroso ◽  
Saltaren ◽  
Portilla ◽  
Cely ◽  
Yakrangi

Cable-driven parallel robots with a redundant configuration have infinite solutions for their cable tension distribution to provide a specific wrench to the end-effector. Redundancy is commonly used to increase the workspace and stiffness or to achieve secondary objectives like energetic minimization or additional movements. This article presents a method based on energy distribution to handle the redundancy of cable-driven parallel robots. This method allows the deformation and tension of each link to be related to the total energy available in the parallel robot. The study of energy distribution expression allows deformation, tension, and position to be combined. It also defines the range of tension and deformation that cables can achieve without altering the wrench exerted on the end-effector. This range is used with a passive reconfigurable end-effector to control the position of two grippers attached to some cables which act as compliant actuators. The relationship between the actuators’ energy and their corresponding gripper positions is also provided. In this way, energy measurement from the actuators allows the grasping state to be sensed. The results are validated using multibody dynamic software.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


1999 ◽  
Author(s):  
Luc H. Rolland

Abstract Two novel 4-DOF very fast parallel robots were designed. This paper introduces the new parallel mechanism designs which are named the Manta and the Kanuk. In order to reduce manipulator overall costs, the actuator and encoder numbers are minimized to the exact effective degrees-of-freedoms (DOF) which is usually not the case in most parallel robot designs. The robots allow end-effector displacements along the three Cartesian translations and one platform transversal rotation. The two remaining rotations are blocked by the intrinsic mechanical structure including the rotation along the platform normal which is always limited in range. The main advantages are high stiffness through the multiple kinematic chain structure which allow for low mass designs. Moreover, they feature simple mechanical construction. Thus, it shall be possible to achieve very high throughput since high accelerations are feasible. To circumvent the known workspace limitations, the actuators were selected to be prismatic along linear axes. The applications are automated warehouse manipulation, mediatheque manipulation, machine tool tool changers, loading and unloading.


Author(s):  
Ming Huang

A study of workspace and singularity characteristics is presented for two common types of 3-DOF planar parallel robot manipulators. The robots considered feature a kinematic structure with 3 in-parallel actuated, R-R-R and R-P-R serial chain geometries. In this study, computer simulations aided with graphic visualization were used to characterize the complete pose workspace (for ranges of both position and orientation) and the singularity inherent to the systems. Parametric studies have also been performed to ascertain the way in which both characteristics vary with respect to various geometric parameters such as pivot location, link length, and platform size for end-effector. Results are shown by way of a unique composite ratio of the available workspace to the density of singularity within that workspace.


Author(s):  
Salua Hamaza ◽  
Patrice Lambert ◽  
Marco Carricato ◽  
Just Herder

This paper explores the fundamentals of parallel robots with configurable platforms (PRCP), as well as the design and the kinematic analysis of those. The concept behind PRCP is that the rigid (non-configurable) end-effector is replaced by a closed-loop chain, the configurable platform. The use of a closed-loop chain allows the robot to interact with the environment from multiple contact points on the platform, which reflects the presence of multiple end-effectors. This results in a robot that successfully combines motion and grasping capabilities into a structure that provides an inherent high stiffness. This paper aims to introduce the QuadroG robot, a 4 degrees of freedom PRCP which finely merges planar motion together with grasping capabilities.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Loïc Cuvillon ◽  
Xavier Weber ◽  
Jacques Gangloff

Abstract Cable-driven parallel robots are well suited for applications that require a very large workspace. Thanks to their lightweight moving parts, they can achieve high dynamics while remaining pretty safe for nearby human workers. Furthermore, their size depends only on the length of the cables; thus, their scale is almost totally decoupled from their cost. However, due to the cables, the stiffness is very low with respect to rigid link robots, inducing slowly damped oscillations of the end effector. Previous works have shown that those vibrations can be effectively damped by the winch actuators thanks to active vibration damping techniques. In this paper, a gain scheduling approach is proposed based on a linearized model of the robot dynamics. This model is projected in the modal space yielding six decoupled transfer functions for six degrees-of-freedom (DoFs) of a cable-driven parallel robot using thin cables. The stability of the proposed control law is analyzed for a static and a moving end effector. The proposed control algorithm is validated experimentally on an eight-cable suspended robot prototype.


Sign in / Sign up

Export Citation Format

Share Document