A time-delayed observer for fault detection and isolation in industrial robots

Robotica ◽  
2006 ◽  
Vol 24 (5) ◽  
pp. 557-565 ◽  
Author(s):  
F. Caccavale ◽  
P. Chiacchio ◽  
I. D. Walker

In this paper a discrete-time observer-based approach to Fault Detection and Isolation (FDI) for industrial robotic manipulators is presented and experimentally tested. In order to counteract the effects of unmodeled dynamics and disturbances, a time-delayed estimate of such effects is adopted. Remarkably, the observer is designed directly in the discrete-time domain. The performance of the proposed approach are experimentally verified on a six-degrees-of-freedom industrial robot.

Author(s):  
Sudip Chakraborty ◽  
P. S. Aithal

Purpose: Research on robotics needs a robot to experiment on it. The actual industrial robot is costly. So, the only resort is to use a Robot simulator. The RoboDK is one of the best robot simulators now. It has covered most of the popular industrial robots. Its interface is straightforward. Just open the software, download the robot as we need, and start experiments. Up to that, no issue was found anywhere. However, the problem begins when we want to build the simulated robot by own. Lots of complexity arises like coordinate assignment, rotation not aligned, length mismatch, robot not synced with DH parameter. We begin to find some documents for making the robots. A few bits of the document are present. That is why we research it. After doing that, we prepared this paper for the researcher who wants to develop the simulated robot independently. This paper can be referenced for them. To minimize the complexity of our research, we study an industrial robot, ABB IRB 120-30.6. It is a good and popular robot. It is six degrees of freedom robot. We will use the specification and STEP file from their respective website and build a simulated robot from the STEP file for our research purpose. Design/Methodology/Approach: We will create a simulated robot from ABB IRB 120-30.6 STEP file. To create a robot by own, we took the help of the IRB 120 robot model. To demonstrate as simple as possible, we start with that robot whose default design is already present. We match and tune the joint coordinate based on robot parameters through this experiment. Findings/results: Here, we see how to create a custom robot. Using the IRB 120 robot model, we will create a robot model step by step. Furthermore, it will move it around its axis. Originality/Value: Using this experiment, the new researcher can get valuable information to create their custom robot. Paper Type: Simulation-based Research.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qiangqiang Zhao ◽  
Junkang Guo ◽  
Jun Hong

Abstract Kinematic reliability is an essential index assessing the work performance of robotic manipulators. In general, the kinematic reliability of robotic manipulators is defined as the probability of the pose or position error falling into a specified tolerant region. Therefore, this work proposes an efficient method to conduct kinematic reliability analysis for robotic manipulators under rectangular and spherical allowable safe boundaries in terms of dimension and input uncertainties. First, based on the Baker–Campbell–Hausdorff formula and Lie group theory, the mean and covariance matrix of the distribution of the pose error are analytically determined. Then, the expectation propagation of the multivariate Gaussian and saddlepoint approximation method are employed to calculate the probabilities of kinematic reliability under the rectangular and spherical safe boundaries, respectively. The proposed method takes into account the boundness of the random error variable and is available for arbitrarily distributed errors. Finally, a spatial six degrees-of-freedom industrial robot is used as an example to demonstrate the effectiveness of the proposed method by comparison with other methods. The comparison results indicate that the proposed method has higher accuracy and efficiency.


2014 ◽  
Vol 687-691 ◽  
pp. 645-648
Author(s):  
Qiang Fu ◽  
Wen Ming Zhang

Six degrees of freedom in this paper, by using the ADAMS software to realize the industrial robots can make any saddle trajectory simulation, and trajectory parameters, and it is easy to control the generated trajectory of the saddle shape, size and spatial position,which will improve the efficiency of the industrial robot simulation. The method of complex space curve simulation is generic, and can test the coordinate axis displacement, so the executing agency for the actual factory to avoid movement interference has a certain significance.


2019 ◽  
Vol 25 ◽  
pp. 01010
Author(s):  
Hao Zhou

With the continuous development of industrial automation, the demand for industrial robots in the manufacturing field is gradually increasing. In order to meet the needs of different occasions and functions, the planning of the trajectory of the robot becomes the research direction of the six-degree-of-freedom robot. The research object of this paper is a six-degree-of-freedom industrial robot. According to engineering needs, a structure of a handling robot is designed. The kinematics of the robot and its trajectory planning are studied, and the simulation analysis is made.


Author(s):  
Danming Wei ◽  
Alireza Tofangchi ◽  
Andriy Sherehiy ◽  
Mohammad Hossein Saadatzi ◽  
Moath Alqatamin ◽  
...  

Abstract Industrial robots, as mature and high-efficient equipment, have been applied to various fields, such as vehicle manufacturing, product packaging, painting, welding, and medical surgery. Most industrial robots are only operating in their own workspace, in other words, they are floor-mounted at the fixed locations. Just some industrial robots are wall-mounted on one linear rail based on the applications. Sometimes, industrial robots are ceiling-mounted on an X-Y gantry to perform upside-down manipulation tasks. The main objective of this paper is to describe the NeXus, a custom robotic system that has been designed for precision microsystem integration tasks with such a gantry. The system tasks include assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobotic prototypes. The NeXus consists of a custom designed frame, providing structural rigidity, a large overhead X-Y gantry carrying a 6 degrees of freedom industrial robot, and several other precision positioners and processes. We focus here on the design and precision evaluation of the overhead ceiling-mounted industrial robot of NeXus and its supporting frame. We first simulated the behavior of the frame using Finite Element Analysis (FEA), then experimentally evaluated the pose repeatability of the robot end-effector using three different types of sensors. Results verify that the performance objectives of the design are achieved.


Sign in / Sign up

Export Citation Format

Share Document