scholarly journals ABB IRB 120-30.6 Build Procedure in RoboDK

Author(s):  
Sudip Chakraborty ◽  
P. S. Aithal

Purpose: Research on robotics needs a robot to experiment on it. The actual industrial robot is costly. So, the only resort is to use a Robot simulator. The RoboDK is one of the best robot simulators now. It has covered most of the popular industrial robots. Its interface is straightforward. Just open the software, download the robot as we need, and start experiments. Up to that, no issue was found anywhere. However, the problem begins when we want to build the simulated robot by own. Lots of complexity arises like coordinate assignment, rotation not aligned, length mismatch, robot not synced with DH parameter. We begin to find some documents for making the robots. A few bits of the document are present. That is why we research it. After doing that, we prepared this paper for the researcher who wants to develop the simulated robot independently. This paper can be referenced for them. To minimize the complexity of our research, we study an industrial robot, ABB IRB 120-30.6. It is a good and popular robot. It is six degrees of freedom robot. We will use the specification and STEP file from their respective website and build a simulated robot from the STEP file for our research purpose. Design/Methodology/Approach: We will create a simulated robot from ABB IRB 120-30.6 STEP file. To create a robot by own, we took the help of the IRB 120 robot model. To demonstrate as simple as possible, we start with that robot whose default design is already present. We match and tune the joint coordinate based on robot parameters through this experiment. Findings/results: Here, we see how to create a custom robot. Using the IRB 120 robot model, we will create a robot model step by step. Furthermore, it will move it around its axis. Originality/Value: Using this experiment, the new researcher can get valuable information to create their custom robot. Paper Type: Simulation-based Research.

2014 ◽  
Vol 687-691 ◽  
pp. 645-648
Author(s):  
Qiang Fu ◽  
Wen Ming Zhang

Six degrees of freedom in this paper, by using the ADAMS software to realize the industrial robots can make any saddle trajectory simulation, and trajectory parameters, and it is easy to control the generated trajectory of the saddle shape, size and spatial position,which will improve the efficiency of the industrial robot simulation. The method of complex space curve simulation is generic, and can test the coordinate axis displacement, so the executing agency for the actual factory to avoid movement interference has a certain significance.


Robotica ◽  
2006 ◽  
Vol 24 (5) ◽  
pp. 557-565 ◽  
Author(s):  
F. Caccavale ◽  
P. Chiacchio ◽  
I. D. Walker

In this paper a discrete-time observer-based approach to Fault Detection and Isolation (FDI) for industrial robotic manipulators is presented and experimentally tested. In order to counteract the effects of unmodeled dynamics and disturbances, a time-delayed estimate of such effects is adopted. Remarkably, the observer is designed directly in the discrete-time domain. The performance of the proposed approach are experimentally verified on a six-degrees-of-freedom industrial robot.


2019 ◽  
Vol 25 ◽  
pp. 01010
Author(s):  
Hao Zhou

With the continuous development of industrial automation, the demand for industrial robots in the manufacturing field is gradually increasing. In order to meet the needs of different occasions and functions, the planning of the trajectory of the robot becomes the research direction of the six-degree-of-freedom robot. The research object of this paper is a six-degree-of-freedom industrial robot. According to engineering needs, a structure of a handling robot is designed. The kinematics of the robot and its trajectory planning are studied, and the simulation analysis is made.


Author(s):  
Danming Wei ◽  
Alireza Tofangchi ◽  
Andriy Sherehiy ◽  
Mohammad Hossein Saadatzi ◽  
Moath Alqatamin ◽  
...  

Abstract Industrial robots, as mature and high-efficient equipment, have been applied to various fields, such as vehicle manufacturing, product packaging, painting, welding, and medical surgery. Most industrial robots are only operating in their own workspace, in other words, they are floor-mounted at the fixed locations. Just some industrial robots are wall-mounted on one linear rail based on the applications. Sometimes, industrial robots are ceiling-mounted on an X-Y gantry to perform upside-down manipulation tasks. The main objective of this paper is to describe the NeXus, a custom robotic system that has been designed for precision microsystem integration tasks with such a gantry. The system tasks include assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobotic prototypes. The NeXus consists of a custom designed frame, providing structural rigidity, a large overhead X-Y gantry carrying a 6 degrees of freedom industrial robot, and several other precision positioners and processes. We focus here on the design and precision evaluation of the overhead ceiling-mounted industrial robot of NeXus and its supporting frame. We first simulated the behavior of the frame using Finite Element Analysis (FEA), then experimentally evaluated the pose repeatability of the robot end-effector using three different types of sensors. Results verify that the performance objectives of the design are achieved.


Author(s):  
I Postlethwaite ◽  
A Bartoszewicz

In this paper, an application of a non-linear H∞ control law for an industrial robot manipulator is presented. Control of the manipulator motion is formulated into a non-linear H∞ optimization problem, namely optimal tracking performance in the presence of modelling uncertainties and external disturbances. Analytical solutions for this problem are implemented on a real robot. The robot under consideration is the six-degrees-of-freedom GEC Tetrabot. Investigations are made into the selection of weights for the H∞ controller and it is shown how different selections of weights affect the Tetrabot performance. The authors believe this to be the first robotic application of nonlinear H∞ control. Comparisons of the proposed control strategy with conventional proportional-derivative and proportional-integral-derivative controllers show favourable performance of the Tetrabot under the new non-linear H∞ control scheme.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4336 ◽  
Author(s):  
Hanming Zhang ◽  
Chunguang Xu ◽  
Dingguo Xiao

Crack assessment when making fitness-for-service decisions requires a thorough examination of crack location and size in critical areas. An ultrasonic transducer is used for such assessments, but traditional methods cannot cope with complex rotators, such as wheel hubs. We present a model of robot-assisted crack growth assessment in wheel hubs. We integrate a six-degrees-of-freedom (DOF) industrial robot and a turntable to form a robot-assisted ultrasonic testing (UT) system that does not use traditional UT equipment. Ultrasonic beams are focused at certain depths appropriate for achieving maximum sensitivity. We quantitatively analysed wheel hubs with longitudinal and transverse series of pre-cracks, and concluded that our system autonomously detected cracks.


2018 ◽  
Vol 38 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Haixia Wang ◽  
Xiao Lu ◽  
Wei Cui ◽  
Zhiguo Zhang ◽  
Yuxia Li ◽  
...  

Purpose Developing general closed-form solutions for six-degrees-of-freedom (DOF) serial robots is a significant challenge. This paper thus aims to present a general solution for six-DOF robots based on the product of exponentials model, which adapts to a class of robots satisfying the Pieper criterion with two parallel or intersecting axes among its first three axes. Design/methodology/approach The proposed solution can be represented as uniform expressions by using geometrical properties and a modified Paden–Kahan sub-problem, which mainly adopts the screw theory. Findings A simulation and experiments validated the correctness and effectiveness of the proposed method (general resolution for six-DOF robots based on the product of exponentials model). Originality/value The Rodrigues rotation formula is additionally used to turn the complex problem into a solvable trigonometric function and uniformly express six solutions using two formulas.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Mathieu Brunot ◽  
Alexandre Janot ◽  
Francisco Carrillo ◽  
Joono Cheong ◽  
Jean-Philippe Noël

Abstract Industrial robot identification is usually based on the inverse dynamic identification model (IDIM) that comes from Newton's laws and has the advantage of being linear with respect to the parameters. Building the IDIM from the measurement signals allows the use of linear regression techniques like the least-squares (LS) or the instrumental variable (IV) for instance. Nonetheless, this involves a careful preprocessing to deal with sensor noise. An alternative in system identification is to consider an output error approach where the model's parameters are iteratively tuned in order to match the simulated model's output and the measured system's output. This paper proposes an extensive comparison of three different output error approaches in the context of robot identification. One of the main outcomes of this work is to show that choosing the input torque as target identification signal instead of the output position may lead to a gain in robustness versus modeling errors and noise and in computational time. Theoretical developments are illustrated on a six degrees-of-freedom rigid robot.


1990 ◽  
Vol 112 (4) ◽  
pp. 653-660 ◽  
Author(s):  
H. Kazerooni ◽  
K. G. Bouklas ◽  
J. Guo

This work presents a control methodology for compliant motion in redundant robot manipulators. This control approach takes advantage of the redundancy in the robot’s degrees of freedom: while a maximum six degrees of freedom of the robot control the robot’s endpoint position, the remaining degrees of freedom impose an appropriate force on the environment. To verify the applicability of this control method, an active end-effector is mounted on an industrial robot to generate redundancy in the degrees of freedom. A set of experiments are described to demonstrate the use of this control method in constrained maneuvers. The stability of the robot and the environment is analyzed.


2021 ◽  
Vol 33 (1) ◽  
pp. 158-171
Author(s):  
Monica Tiboni ◽  
◽  
Giovanni Legnani ◽  
Nicola Pellegrini

Modeless industrial robot calibration plays an important role in the increasing employment of robots in industry. This approach allows to develop a procedure able to compensate the pose errors without complex parametric model. The paper presents a study aimed at comparing neural-kinematic (N-K) architectures for a modeless non-parametric robotic calibration. A multilayer perceptron feed-forward neural network, trained in a supervised manner with the back-propagation learning technique, is coupled in different modes with the ideal kinematic model of the robot. A comparative performance analysis of different neural-kinematic architectures was executed on a two degrees of freedom SCARA manipulator, for direct and inverse kinematics. Afterward the optimal schemes have been identified and further tested on a three degrees of freedom full SCARA robot and on a Stewart platform. The analysis on simulated data shows that the accuracy of the robot pose can be improved by an order of magnitude after compensation.


Sign in / Sign up

Export Citation Format

Share Document