Neuro-fuzzy-based skill learning for robots

Robotica ◽  
2011 ◽  
Vol 30 (6) ◽  
pp. 1013-1027 ◽  
Author(s):  
Hsien-I. Lin ◽  
C. S. George Lee

SUMMARYEndowing robots with the ability of skill learning enables them to be versatile and skillful in performing various tasks. This paper proposes a neuro-fuzzy-based, self-organizing skill-learning framework, which differs from previous work in its capability of decomposing a skill by self-categorizing it into significant stimulus-response units (SRU, a fundamental unit of our skill representation), and self-organizing learned skills into a new skill. The proposed neuro-fuzzy-based, self-organizing skill-learning framework can be realized by skill decomposition and skill synthesis. Skill decomposition aims at representing a skill and acquiring it by SRUs, and is implemented by stages with a five-layer neuro-fuzzy network with supervised learning, resolution control, and reinforcement learning to enable robots to identify a sufficient number of significant SRUs for accomplishing a given task without extraneous actions. Skill synthesis aims at organizing a new skill by sequentially planning learned skills composed of SRUs, and is realized by stages, which establish common SRUs between two similar skills and self-organize a new skill from these common SRUs and additional new SRUs by reinforcement learning. Computer simulations and experiments with a Pioneer 3-DX mobile robot were conducted to validate the self-organizing capability of the proposed skill-learning framework in identifying significant SRUs from task examples and in common SRUs between similar skills and learning new skills from learned skills.

2021 ◽  
Author(s):  
Jacob Elder ◽  
Tyler Davis ◽  
Brent Hughes

People learn about themselves from social feedback, but desires for coherence and positivity constrain how feedback is incorporated into the self-concept. We develop a network-based model of the self-concept and embed it in a reinforcement learning framework to provide a mechanistic account of how motivations shape self-learning from feedback. Participants (n = 46) received feedback while self-evaluating on traits drawn from a causal network of trait semantics. Network-defined communities were assigned different likelihoods of positive feedback. Participants learned from positive feedback but dismissed negative feedback, as reflected by asymmetries in computational parameters that represent the incorporation of positive versus negative outcomes. Furthermore, participants were constrained in how they incorporated feedback: self-evaluations changed less for traits more important to coherence of the network. We provide a mechanistic explanation of how motives for coherence and positivity jointly constrain learning about the self from feedback that makes testable predictions for future clinical research.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jun Zhao ◽  
Xumei Chen

An intelligent evaluation method is presented to analyze the competitiveness of airlines. From the perspective of safety, service, and normality, we establish the competitiveness indexes of traffic rights and the standard sample base. The self-organizing mapping (SOM) neural network is utilized to self-organize and self-learn the samples in the state of no supervision and prior knowledge. The training steps of high convergence speed and high clustering accuracy are determined based on the multistep setting. The typical airlines index data are utilized to verify the effect of the self-organizing mapping neural network on the airline competitiveness analysis. The simulation results show that the self-organizing mapping neural network can accurately and effectively classify and evaluate the competitiveness of airlines, and the results have important reference value for the allocation of traffic rights resources.


2021 ◽  
Vol 58 (1) ◽  
pp. 22-41
Author(s):  
Fabian A. Harang ◽  
Marc Lagunas-Merino ◽  
Salvador Ortiz-Latorre

AbstractWe propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brownian motion, where the Hurst function is dependent on the past of the process. We define this by means of a stochastic Volterra equation, and we prove existence and uniqueness of this equation, as well as giving bounds on the p-order moments, for all $p\geq1$. We show convergence of an Euler–Maruyama scheme for the process, and also give the rate of convergence, which is dependent on the self-exciting dynamics of the process. Moreover, we discuss various applications of this process, and give examples of different functions to model self-exciting behavior.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


Sign in / Sign up

Export Citation Format

Share Document