Topological simultaneous localization and mapping: a survey

Robotica ◽  
2013 ◽  
Vol 32 (5) ◽  
pp. 803-821 ◽  
Author(s):  
Jaime Boal ◽  
Álvaro Sánchez-Miralles ◽  
Álvaro Arranz

SUMMARYOne of the main challenges in robotics is navigating autonomously through large, unknown, and unstructured environments. Simultaneous localization and mapping (SLAM) is currently regarded as a viable solution for this problem. As the traditional metric approach to SLAM is experiencing computational difficulties when exploring large areas, increasing attention is being paid to topological SLAM, which is bound to provide sufficiently accurate location estimates, while being significantly less computationally demanding. This paper intends to provide an introductory overview of the most prominent techniques that have been applied to topological SLAM in terms of feature detection, map matching, and map fusion.

Author(s):  
Kunjin Ryu ◽  
Tomonari Furukawa ◽  
Stanislaw Antol ◽  
Gamini Dissanayake

This paper presents a grid-based scan-to-map matching technique for accurate simultaneous localization and mapping (SLAM). At every acquisition of a new scan, the proposed technique estimates the relative position from which the previous scan was taken, and further corrects its estimation error by matching the new scan to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the map to match is represented as a grid map with multiple normal distributions (NDs) in each cell. Additionally, the new scan is also represented by NDs, developing a novel ND-to-ND matching technique. The ND-to-ND matching technique has significant potential in the enhancement of the global matching as well as the computational efficiency. Experimental results first show that the proposed technique successfully matches new scans to the map generating very small position and orientation errors, and then demonstrates the effectiveness of the multi-ND representation in comparison to the single-ND representation.


Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


2020 ◽  
Vol 1682 ◽  
pp. 012049
Author(s):  
Jianjie Zhenga ◽  
Haitao Zhang ◽  
Kai Tang ◽  
Weidi Kong

Automation ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 48-61
Author(s):  
Bhavyansh Mishra ◽  
Robert Griffin ◽  
Hakki Erhan Sevil

Visual simultaneous localization and mapping (VSLAM) is an essential technique used in areas such as robotics and augmented reality for pose estimation and 3D mapping. Research on VSLAM using both monocular and stereo cameras has grown significantly over the last two decades. There is, therefore, a need for emphasis on a comprehensive review of the evolving architecture of such algorithms in the literature. Although VSLAM algorithm pipelines share similar mathematical backbones, their implementations are individualized and the ad hoc nature of the interfacing between different modules of VSLAM pipelines complicates code reuseability and maintenance. This paper presents a software model for core components of VSLAM implementations and interfaces that govern data flow between them while also attempting to preserve the elements that offer performance improvements over the evolution of VSLAM architectures. The framework presented in this paper employs principles from model-driven engineering (MDE), which are used extensively in the development of large and complicated software systems. The presented VSLAM framework will assist researchers in improving the performance of individual modules of VSLAM while not having to spend time on system integration of those modules into VSLAM pipelines.


Sign in / Sign up

Export Citation Format

Share Document