Unilaterally Constrained Motion of a Curved Surgical Tool

Robotica ◽  
2020 ◽  
Vol 38 (11) ◽  
pp. 1940-1962
Author(s):  
Bassem Dahroug ◽  
Brahim Tamadazte ◽  
Nicolas Andreff

SUMMARYConstrained motion is essential for varying robotics tasks, especially in surgical robotics, for instance, the case of minimally invasive interventions. This article proposes generic formulations of the classical bilateral constrained motion (i.e., when the incision hole has almost the same diameter as that of the tool) as well as unilaterally constrained motion (i.e., when the hole incision has a larger diameter compared to the tool diameter). One of the latter constraints is combined with another surgical task such as incision/ablation or suturing a wound (modeled here by 3D geometric paths). The developed control methods based on the hierarchical task approach are able to manage simultaneously the constrained motion (depending on the configuration case, i.e., bilateral or unilateral constraint) and a 3D path following. In addition, the proposed methods can operate with both straight or curved surgical tools. The proposed methods were successfully validated in various scenarios. Foremost, a simulation framework was proposed to access the performances of each proposed controller. Thereafter, several experimental validations were carried out. Both the simulation and experimental results have demonstrated the relevance of the proposed approach, as well as promising performances in terms of behavior as well as accuracy.

2003 ◽  
Vol 773 ◽  
Author(s):  
Keith J. Rebello ◽  
Kyle S. Lebouitz ◽  
Michele Migliuolo

AbstractThe development of sophisticated endoscopic tools and the recent introduction of robotics are expanding the applications of minimally invasive surgery. The lack of tactile feedback in the currently available endoscopic and robotic telemanipulation systems however represents a significant limitation. A need has arisen for the development of surgical instruments having integrated sensors. Current efforts to integrate sensors into or onto surgical tools has focused on fabrication of sensors on silicon, polyimide, or some other substrate and then attaching the sensors to a tool by hand or machine with epoxy, tape, or some other glue layer. Attaching the sensor in this manner has certain deficiencies. In particular, this method of attaching sensors to a surgical tool limits the sensors size, increases its thickness, and further constrains where the sensor can be placed. A method of fabricating tactile sensors on surgical instruments that addresses these deficiencies is discussed.


2006 ◽  
Vol 34 ◽  
pp. 979-984 ◽  
Author(s):  
S Ezhilvalavan ◽  
Zaoli Zhang ◽  
Jeremy Loh ◽  
Jackie Y Ying

2010 ◽  
Vol 4 (3) ◽  
Author(s):  
Shorya Awtar ◽  
Tristan T. Trutna ◽  
Jens M. Nielsen ◽  
Rosa Abani ◽  
James Geiger

This paper presents a new minimally invasive surgical (MIS) tool design paradigm that enables enhanced dexterity, intuitive control, and natural force feedback in a low-cost compact package. The paradigm is based on creating a tool frame that is attached to the surgeon’s forearm, making the tool shaft an extension of the latter. Two additional wristlike rotational degrees of freedom (DoF) provided at an end-effector that is located at the end of the tool shaft are manually actuated via a novel parallel-kinematic virtual center mechanism at the tool input. The virtual center mechanism, made possible by the forearm-attached tool frame, creates a virtual two-DoF input joint that is coincident with the surgeon’s wrist, allowing the surgeon to rotate his/her hand with respect to his/her forearm freely and naturally. A cable transmission associated with the virtual center mechanism captures the surgeon’s wrist rotations and transmits them to the two corresponding end-effector rotations. This physical configuration allows an intuitive and ergonomic one-to-one mapping of the surgeon’s forearm and hand motions at the tool input to the end-effector motions at the tool output inside the patient’s body. Moreover, a purely mechanical construction ensures low-cost, simple design, and natural force feedback. A functional decomposition of the proposed physical configuration is carried out to identify and design key modules in the system—virtual center mechanism, tool handle and grasping actuation, end-effector and output joint, transmission system, tool frame and shaft, and forearm brace. Development and integration of these modules leads to a proof-of-concept prototype of the new MIS tool, referred to as FlexDex™, which is then tested by a focused end-user group to evaluate its performance and obtain feedback for the next stage of technology development.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianmin Li ◽  
Yuan Xing ◽  
Ke Liang ◽  
Shuxin Wang

To deliver more value to the healthcare industry, a specialized surgical robot is needed in the minimally invasive surgery (MIS) field. To fill this need, a compact hybrid robotic wrist with four degrees of freedom (DOFs) is developed for assisting physicians to perform MIS. The main body of the wrist is a 2DOF parallel mechanism with a remote center-of-motion (RCM), which is located outside the mechanism. From the mechanical point of view, it is different from existing 2DOF spherical mechanisms, since there is no physical constraint on the RCM. Other DOFs of the wrist are realized by a revolute joint and a prismatic joint, which are serially mounted on the movable platform of the parallel mechanism. The function of these DOFs is to realize the roll motion and the in-out translation of the surgical tool. Special attention is paid to the parallel RCM mechanism. The detailed design is provided and the kinematic equations are obtained in the paper. Further, the Jacobian matrix is derived based on the kinematic equations. Finally, the paper examines the singularity configurations and implements the condition number analysis to identify the kinematic performance of the mechanism.


2011 ◽  
Vol 8 (2) ◽  
pp. 173-190 ◽  
Author(s):  
Philip R. Roan ◽  
Andrew S. Wright ◽  
Thomas S. Lendvay ◽  
Mika N. Sinanan ◽  
Blake Hannaford

Minimally invasive surgical procedures have improved the standard of patient care by reducing recovery time, chance of infection, and scarring. A recent review estimates that leaks occur in 3% to 6% of bowel anastomoses, resulting in “increased morbidity and mortality and adversely [affecting] length of stay, cost, and cancer recurrence” [23]. Many of these leaks are caused by poor handling and ischemic tissue.Detecting a change in temperature can indicate ischemic tissue. The optical absorption spectrum of a tissue can be used to detect tissue oxygen concentration and tissue ischemia. The electrical impedance of tissue changes as ischemia progresses.This article describes the development of a minimally invasive surgical tool with integrated sensors for replicating ischemia detection measurements during routine manipulation of the tissue. To be useful, this tool should be feasible for use in a real operating room, providing real-time feedback and diagnosis to the surgeon. The design of the tool and choice of the sensors leverages existing work in physiological measurements and surgical tool design.The tool includes a thermistor for measuring the temperature, four LEDs and a photodiode for measuring local optical absorption, and four electrodes for measuring the electrical impedance. The sensors are located on a 7 mm square sensor head, which is mounted to a minimally invasive grasper. A strain gauge and optical encoder monitor the applied force and position of the tool, and a motor controls both. This allows the tool to control the tool-tissue interface. Sensor accuracy has been validated through calibration.


Author(s):  
Baoliang Zhao ◽  
Carl A. Nelson

Robotic minimally invasive surgery has achieved success in various procedures; however, the lack of haptic feedback is considered by some to be a limiting factor. The typical method to acquire tool-tissue reaction forces is attaching force sensors on surgical tools, but this complicates sterilization and makes the tool bulky. This paper explores the feasibility of using motor current to estimate tool-tissue forces, and demonstrates acceptable results in terms of time delay and accuracy. This sensorless force estimation method sheds new light on the possibility of equipping existing robotic surgical systems with haptic interfaces that require no sensors and are compatible with existing sterilization methods.


2019 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Austin Taylor ◽  
Sheng Xu ◽  
Bradford Wood ◽  
Zion Tse

The objective of this study is to preliminarily evaluate a lesion-targeting device for CT-guided interventions. The device is created by laser cutting the structure from a sheet of medical grade paperboard, 3D printing two radiocontrast agent grids onto the surface and folding the structure into a rectangular prism with a viewing window. An abdominal imaging phantom was used to evaluate the device through CT imaging and the targeting of lesions for needle insertion. The lesion-targeting trials resulted in a mean targeting error of 2.53 mm (SD 0.59 mm, n = 30). The device is rigid enough to adequately support standard biopsy needles, and it attaches to the patient, reducing the risk of tissue laceration by needles held rigidly in place by an external manipulator. Additional advantages include adequate support for the insertion of multiple surgical tools at once for procedures such as composite ablation and the potential to guide off-axial needle insertion. The low-cost and disposability of the device make it well-suited for the minimally invasive image-guided therapy environment.


Sign in / Sign up

Export Citation Format

Share Document