Modeling and base parameters identification of legged robots

Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Xu Chang ◽  
Honglei An ◽  
Hongxu Ma

Abstract This paper first uses a decoupling modeling method to model legged robots. The method groups all the degrees of freedom according to the number of limbs, regarding each limb as a manipulator with serial structure, which greatly reduces the number of dynamic parameters that need to be identified simultaneously. On this basis, a step-by-step identification method from the end-effector link to the base link, referred to as “E-B” identification method, is proposed. Simulation verification is carried out on a quadruped robot with 16 degrees of freedom in Gazebo, and the validity of the method proposed is discussed.

Author(s):  
Muhammad Bilal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


Author(s):  
Mahdi Khorram ◽  
S Ali A Moosavian

Legged robots have superior advantages rather than wheeled robots for moving over uneven terrains in the presence of various obstacles. The design of an appropriate path for the main body and legs is an important issue for such robots especially on the uneven terrains. In this paper, the focus is to develop a stable gait for a quadruped robot to trot on uneven terrains. First, a stability condition is developed for a whole-body quadruped robot over uneven terrains based on avoiding the tumbling. By using a simple model, a point with zero moments is calculated in the three-dimensional space. Then, the reference path of this point is determined so that the tumbling moments become zero. The path of the main body will be calculated by using an optimal controller. The main feature of the proposed gait generation framework is that the height of robot can change continuously and stably on uneven terrains. To evaluate the robot stability, the tumbling moments around diagonal lines are calculated and some methods are proposed to reduce these moments to improve the robot stability. The tip of swing foot is also planned to avoid any collision with the environment. The proposed method will be demonstrated using an 18-Degrees of freedom (DOF) quadruped robot in simulation and experimental studies. The experimental setup is a small-size quadruped robot, which is composed of a rectangular plate as its main body with four legs that each one has three active joints with DC servo motors. Obtained results reveal that the robot can trot on uneven terrains stably. Besides, the comparison with the previous methods approves the merits of proposed algorithm on uneven terrains.


Author(s):  
Muhammad Bilal Khan ◽  
Ahmad Kamal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2562
Author(s):  
Tomasz Dzitkowski ◽  
Andrzej Dymarek ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Lukasz Orzech ◽  
...  

A method for selecting dynamic parameters and structures of drive systems using the synthesis algorithm is presented. The dynamic parameters of the system with six degrees of freedom, consisting of a power component (motor) and a two-speed gearbox, were determined, based on a formalized methodology. The required gearbox is to work in specific resonance zones, i.e., meet the required dynamic properties such as the required resonance frequencies. In the result of the tests, a series of parameters of the drive system, defining the required dynamic properties such as the resonance and anti-resonance frequencies were recorded. Mass moments of inertia of the wheels and elastic components, contained in the required structure of the driving system, were determined for the selected parameters obtained during the synthesis.


2021 ◽  
Vol 45 (6) ◽  
pp. 9502-9517
Author(s):  
Heng Miao ◽  
Jiajun Chen ◽  
Ling Mao ◽  
Keqing Qu ◽  
Jinbin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document