Redundancy coordination of multiple robotic devices for welding through genetic algorithm

Robotica ◽  
2000 ◽  
Vol 18 (6) ◽  
pp. 669-676 ◽  
Author(s):  
L. Wu ◽  
K. Cui ◽  
S. B. Chen

In this paper we consider the problem of coordinating multiple motion devices for welding. We focus on the problem of coordinating a three-axis positioning table and a six-axis manipulator. The problem is complex as there are nine axes involved and a number of permutations are possible which achieve the same movements of the weld torch. The system is redundant and the robot has singular configurations. As a result, manual programming of the robot system is rather difficult to complete.Our approach to the coordination problem is based on a subdivision of tasks. The welding table is coordinated to align the weld point surface to be anti-parallel to the gravity direction. The six-axis robot is constrained to move the weld torch along the weld trajectory. Robot coordination is achieved by placing the positioning table in a good maneuverability position, i.e. far from its singular configurations and far from the motion limits of the six-axis arm and the motion limits of the track. While considering multiple criteria, including the welding orientation, a Genetic Algorithm was employed to globally optimize six relevant redundant degrees of the multiple robotic system for welding. The joint angles of the arm were generated by inverse kinematics. Our method of redundancy coordination is superior to pseudo-inverse techniques, for it is more global and accurate.

Author(s):  
Massimo Antonini ◽  
Alberto Borboni ◽  
Roberto Bussola ◽  
Rodolfo Faglia

The paper illustrates the application of a genetic algorithm as a methodology to choose and improve the motion law governing the movement of a redundant robot. The subject of this research is an innovative system developed to introduce the laser ray technology in the on-line tube cutting. This technique allows a quality improvement in the pipe-cutting sector, thanks to the various goals. Firstly we underline the improvement of the working environment due to the elimination of cutting noise taking off the tool changing and the steel shaving creation. Secondarily there is a drastic reduction of the cutting cycle time and an improvement of the productivity accomplished by the use of brushless drives and linear motors. In the robot design, particular attention was dedicated to the masses distributions allowing a good natural machine dynamics. The ability of the robot to avoid the cutting object, the demand to maintain the laser torch orthogonal to the cutting surfaces, as well the necessity to impose a velocity behaviour as constant as possible during the cutting operation, suggested the introduction of a redundant degree of freedom. This aspect gives a lot of opportunities in the choose of movements because there are thousands motion profiles for the joints whichever satisfying the conditions imposed to the end-effector path. In this context, we have proposed the idea to combine the procedure to solve the inverse kinematics problem with the contemporaneous optimization of the trajectory. Literature offers a series of algorithms to solve well-known inverse kinematics problem of redundant robot. These are based on the inversion of the matrix representing the link between the end-effector co-ordinates and the joints. The presence of redundancy makes this matrix rectangular and requires the use of the pseudo-inverse matrix to solve the problem in several points of the trajectory. The introduction of some weights, one for each joint co-ordinate, allows to obtain a different distribution of the joint movements computing the pseudo-inverse matrix. If we change these weights in a continuous way in time domain, we can supervise the dynamic behaviors of the machine. The new idea we propose here is the use of an adapted multi-objective genetic algorithm to define a several of particular motion laws reducing vibrations and realizing “special harmonies” in the robot motion. The procedure, that will be completely discussed in the full paper, is actually working on a laser pipe cutting machine. This robot awarded the first prize between two thousand competitor at the EMO MILANO 2003 exhibition.


Author(s):  
Sunil Kumar Agrawal ◽  
Siyan Li ◽  
Glen Desmier

Abstract The human spine is a sophisticated mechanism consisting of 24 vertebrae which are arranged in a series-chain between the pelvis and the skull. By careful articulation of these vertebrae, a human being achieves fine motion of the skull. The spine can be modeled as a series-chain with 24 rigid links, the vertebrae, where each vertebra has three degrees-of-freedom relative to an adjacent vertebra. From the studies in the literature, the vertebral geometry and the range of motion between adjacent vertebrae are well-known. The objectives of this paper are to present a kinematic model of the spine using the available data in the literature and an algorithm to compute the inter vertebral joint angles given the position and orientation of the skull. This algorithm is based on the observation that the backbone can be described analytically by a space curve which is used to find the joint solutions..


2015 ◽  
Vol 87 (10) ◽  
pp. 1284-1294 ◽  
Author(s):  
Kaibalya Mohanty ◽  
Tamoghna Mitra ◽  
Henrik Saxén ◽  
Nirupam Chakraborti

Author(s):  
Tuna Balkan ◽  
M. Kemal Özgören ◽  
M. A. Sahir Arikan ◽  
H. Murat Baykurt

Abstract A semi-analytical method and a computer program are developed for inverse kinematics solution of a class of robotic manipulators, in which four joint variables are contained in wrist point equations. For this case, it becomes possible to express all the joint variables in terms of a joint variable, and this reduces the inverse kinematics problem to solving a nonlinear equation in terms of that joint variable. The solution can be obtained by iterative methods and the remaining joint variables can easily be computed by using the solved joint variable. Since the method is manipulator dependent, the equations will be different for kinematically different classes of manipulators, and should be derived analytically. A significant benefit of the method is that, the singular configurations and the multiple solutions indicated by sign ambiguities can be determined while deriving the inverse kinematic expressions. The developed method is applied to a six-revolute-joint industrial robot, FANUC Arc Mate Sr.


Author(s):  
Sunil Kumar Agrawal ◽  
J. Rambhaskar

Abstract This paper deals with Jacobian singularities of free-floating open-chain planar manipulators. The problem, in essence, is to find the joint angles where the Jacobian mapping between the end-effector rates and the joint rates is singular. In the absence of external forces and couples, for free-floating manipulators, the linear and angular momentum are conserved. This makes the singular configurations of free-floating manipulators different from structurally similar fixed-base manipulators. In order to illustrate this idea, we present a systematic method to obtain the singular solutions of a free-floating series-chain planar manipulator with revolute joints. We show that the singular configurations are solutions of simultaneous polynomial equations in the half-tangent of the joint variables. From the structure of these polynomial equations, we estimate the upper bound on the number of singularities of free-floating planar manipulators and compare these with analogous results for structurally similar fixed-base manipulators.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Junhong Wang ◽  
Qiqi Hao ◽  
Xugang Xi ◽  
Jiuwen Cao ◽  
Anke Xue ◽  
...  

The estimation of continuous and simultaneous multijoint angle based on surface electromyography (sEMG) signal is of considerable significance in rehabilitation practice. However, there are few studies on the continuous joint angle of multiple joints at present. In this paper, the wavelet packet energy entropy (WPEE) of the special subspace was investigated as a feature of the sEMG signal. An Elman neural network optimized by genetic algorithm (GA) was established to estimate the joint angle of shoulder and elbow. First, the accuracy of the method is verified by estimating the angle of the shoulder joint. Then, this method was used to simultaneously and continuously estimate the shoulder and elbow joint angle. Six subjects flexed and extended the upper limbs according to the intended movements of the experiment. The results show that this method can obtain a decent performance with a RMSE of 3.4717 and R2 of 0.8283 in shoulder movement and with a RMSE of 4.1582 and R2 of 0.8114 in continuous synchronous movement of the shoulder and elbow.


Sign in / Sign up

Export Citation Format

Share Document