Taxonomic fidelity of silicified filamentous microbes from hot-spring systems in the Taupo Volcanic Zone, North Island, New Zealand

2003 ◽  
Vol 94 (4) ◽  
pp. 475-483 ◽  
Author(s):  
Brian Jones ◽  
Robin W. Renaut ◽  
Michael R. Rosen

ABSTRACTModern, silica-precipitating hot springs, like those found in the Taupo Volcanic Zone (TVZ) on the North Island of New Zealand, are natural laboratories for assessing microbial silicification. Many of the silicified microbes found in the siliceous sinters of these spring systems seem to be life-like replicas of the original microbes. Such preservation reflects the fact that many of the microbes are replaced and encrusted by opal-A before they are destroyed by desiccation and decay. The taxonomic fidelity of these silicified microbes depends on the preservation potential of those features which are needed to identify them. For example, identification of extant cyanobacteria, relies on as many as 37 different features, most of which are not preserved by silicification.In the hot-spring systems of the TVZ, characterisation of cyanobacteria which have been replaced and encrusted by opal-A is typically restricted to colony morphology, the length, diameter and morphology of the filament, and the presence/absence of septa, branching or a sheath. In many cases, description is limited to a subset of these parameters. Such a limited set of morphological characteristics severely impedes identifications in terms of extant taxa. The physical changes which accompany the stepwise diagenetic progression from opal-A to opal-CT ± opal-C to microcrystalline quartz may lead to further degradation of the silicified microbes and the loss of more taxonomically important features. Clearly, considerable care must be taken when trying to name silicified microorganisms and make palaeoenvironmental inferences.

Geophysics ◽  
1981 ◽  
Vol 46 (10) ◽  
pp. 1467-1468 ◽  
Author(s):  
Russell Robinson

A twenty day microearthquake survey of the Ngawha geothermal field, New Zealand, was undertaken in order to establish the level of preproduction seismicity and to test the usefulness of such surveys in geothermal exploration. The Ngawha geothermal field, in the far northwest of the North Island (Northland) is associated with a region of Quaternary basaltic volcanism. It is not a part of the much more extensive Taupo volcanic zone in the central North Island, site of the well‐known Wairakei geothermal field, among others. Although surface thermal activity at Ngawha is limited to a few relatively small hot springs, resistivity surveys have outlined a [Formula: see text] area of hot water at the 1-km depth level (Macdonald et al. , 1977). Test bores to that depth have encountered temperatures of up to 250 °C within Mesozoic graywacke. Overlying the graywacke is about 500 m of Cenozoic claystone and siltstone which forms an impermeable cap.


2003 ◽  
Vol 40 (11) ◽  
pp. 1549-1569 ◽  
Author(s):  
Brian Jones ◽  
R W Renaut

Complex ornate sinter deposits are found in many hot spring and geysers systems throughout the world, including those located in the Taupo Volcanic Zone on the North Island of New Zealand. Those sinters are formed of opal-A that replaced microbes, opal-A precipitated as cement, accessory minerals (e.g., kaolinite, jarosite, calcite), biological detritus (e.g., leaves, wood, pollen grains), and lithic detritus. The opal-A is compositionally variable because of the amount of water (OH and H2O) and, in some cases, accessory elements (e.g., Au, Ag) bound into its structure. The composition and fabric of the siliceous sinter found at any locality reflect the relative balance among the processes of replacement, precipitation, and deposition. The microbes that inhabit these systems are of critical importance because they are commonly replaced by and (or) encrusted with opal-A. In many settings, copious amounts of opal-A are precipitated as cement around the frameworks of silicified filaments. The cementation process, which continues for as long as waters supersaturated with respect to opal-A flow through the sinter, commonly reduces the porosity of the sinters by as much as 50%. This process is probably of far greater significance than has been previously recognized. The textural and compositional complexity of siliceous sinters found in hot spring and geyser systems reflects the myriad of interrelated processes that control their formation.


2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
Martha Savage ◽  
Colin Wilson ◽  
S Bannister

© 2019. American Geophysical Union. All Rights Reserved. We use crustal seismic anisotropy measurements in the North Island, New Zealand, to examine structures and stress within the Taupō Volcanic Zone, the Taranaki Volcanic Lineament, the subducting Hikurangi slab, and the Hikurangi forearc. Results in the Taranaki region are consistent with NW-SE oriented extension yet suggest that the Taranaki volcanic lineament may be controlled by a deep-rooted, inherited crustal structure. In the central Taupō Volcanic Zone anisotropy fast orientations are predominantly controlled by continental rifting. However at Taupō and Okataina volcanoes, fast orientations are highly variable and radial to the calderas suggesting the influence of magma reservoirs in the seismogenic crust (≤15 km depth). The subducting Hikurangi slab has a predominant trench-parallel fast orientation, reflecting the pervasive presence of plate-bending faults, yet changing orientations at depths ≥120 km beneath the central North Island may be relics from previous subduction configurations. Finally, results from the southern Hikurangi forearc show that the orientation of stresses there is consistent with those in the underlying subducting slab. In contrast, the northern Hikurangi forearc is pervasively fractured and is undergoing E-W compression, oblique to the stress field in the subducting slab. The north-south variation in fore-arc stress is likely related to differing subduction-interface coupling. Across the varying tectonic regimes of the North Island our study highlights that large-scale tectonic forces tend to dictate the orientation of stress and structures within the crust, although more localized features (plate coupling, magma reservoirs, and inherited crustal structures) can strongly influence surface magmatism and the crustal stress field.


Extremophiles ◽  
2014 ◽  
Vol 19 (2) ◽  
pp. 327-344 ◽  
Author(s):  
Gurpreet Kaur ◽  
Bruce W. Mountain ◽  
Matthew B. Stott ◽  
Ellen C. Hopmans ◽  
Richard D. Pancost

1996 ◽  
Vol 33 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Brian Jones ◽  
Robin W. Renaut

Hot and boiling springs in Kenya and New Zealand that are emitting water with temperatures more than 90 °C are commonly characterized by a complex array of CaCO3and SiO2precipitates that have been formed through abiogenic and biogenic processes. Thermophilic bacteria are the only microbes that can survive in the boiling water that is discharged into pools around the spring orifice. Analysis of modern substrates from various springs in the Kenya Rift Valley and the Taupo Volcanic Zone in New Zealand shows that they are inhabited by a diverse array of coccoid and filamentous bacteria. In some areas these bacteria produce copious amounts of mucus that coat the substrates. Although the coccoid and filamentous bacteria provide substrates for CaCO3and SiO2precipitation, the microbes do not seem to have any direct influence on the morphology of the precipitates that are produced. Conversely, the mucus found in these hot spring pools selectively takes up elements such as Si, Mg, Al, and Fe, but is not calcified. In many cases the elements that are selectively fixed by the mucus are only present in very low concentrations in the spring water. In one of the Waikite springs in New Zealand, the mucus plays an active role in the formation of the calcite deposits by providing a template for crystal nucleation and binding the small calcite crystals to the substrate. The latter process is especially important because the flowing waters of the spring could easily transport the grains if they were not bound to the substrate.


2003 ◽  
Vol 40 (11) ◽  
pp. 1679-1696 ◽  
Author(s):  
Bridget Y Lynne ◽  
Kathleen A Campbell

Silica sinter is a subaerial hot-spring deposit formed upon cooling (<100 °C) of discharging alkali-chloride waters. Silica deposition traps and fossilizes living microbes in low-temperature (<35 °C) to mid-temperature (~35–59 °C) apron–terrace outflow channels and pools, which record distinctive macrotextures and microtextures along a thermal gradient. Sinters from four geothermal fields, Orakei Korako, northern Waiotapu, Te Kopia, and Umukuri, within the Taupo Volcanic Zone, New Zealand, were sampled from two common microbe-rich microfacies (low-temperature palisade, mid-temperature bubble mat) through a range of ages (modern to ~40 000 years BP). We observed morphologic changes in microbial silicification and stepwise transitions in silica phase mineralogy throughout diagenesis (opal-A to quartz). X-ray powder diffractometry analysis of Taupo Volcanic Zone sinter samples revealed that mode of microbial fossilization is controlled by silica phase mineralogy, which also determines the preservation potential of environmentally significant and measurable filament parameters. Typical low-temperature palisade microfacies display thick sheaths (>3 µm diameter) and coarse tubular filament moulds >5 µm in diameter, whereas mid-temperature bubble mat microfacies characteristically consist of thin sheaths (~1 µm diameter) with fine moulds < 3 µm in diameter. Upon diagenesis and silica phase transformation to opal-CT, the two subenvironments cannot be distinguished based on filament diameter alone. This study of recurring microfacies in sinters of different ages allowed us to systematically track the transformation of mineralogical and morphological changes in biotic–abiotic depositional elements during diagenesis of silica sinter, and therefore enhance the paleoenvironmental, paleobiological, and paleohydrologic utility of hydrothermal deposits in the geologic record.


2020 ◽  
Vol 402 ◽  
pp. 105652 ◽  
Author(s):  
Kathleen A. Campbell ◽  
Kirsty Nicholson ◽  
Bridget Y. Lynne ◽  
Patrick R.L. Browne

Author(s):  
W. J. Cousins ◽  
J. X. Zhao ◽  
N. D. Perrin

A combination of weak-motion velocity data from seismographs and strong-motion acceleration data from accelerographs has been used to model the attenuation of peak ground acceleration (PGA) in New Zealand earthquakes. The resulting model extends the PGA attenuation model of Zhao, Dowrick and McVerry [30] to include the variability of rock strength, and also describes the unusually high attenuation in the volcanic zone of the North Island of New Zealand. Strong-rock sites were found to experience lower PGAs than either weak rock or soil sites for magnitudes below Mw 7, and the apparent degree of amplification on going from strong rock to weak rock or soil decreased as the magnitude increased from Mw 5 to Mw 7. At magnitude 7 the PGAs were very similar for all site classes for source distances up to 100 km. When extrapolated to magnitudes beyond the maximum of the data, Mw 7.4, the model predicted that PGAs for strong rock sites were greater than for weak rock or soil sites. The so-called "whole Taupo Volcanic Zone" was found to provide a good boundary for the zone of high attenuation in the volcanic region of the North Island. The high attenuation was successfully modelled as a simple function of the length of travel path through the zone of high attenuation. Over the effective maximum volcanic path length of about 70 km the extra attenuation resulted in a factor of ten reduction in PGA compared with non-volcanic paths of the same length.


Sign in / Sign up

Export Citation Format

Share Document