scholarly journals Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia

1999 ◽  
Vol 15 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Carsten A. Brühl ◽  
Maryati Mohamed ◽  
K. Eduard Linsenmair

The ant communities of the leaf litter were studied along an elevational gradient on Mount Kinabalu in primary rain forest systems ranging from dipterocarp hill forest to dwarf forest of the highest altitudes (560, 800, 1130, 1360, 1530, 1740, 1930, 2025, 2300, 2600 m a.s.l.). The litter ant fauna along the gradient included 283 species of 55 genera. The number of ant species in the leaf litter decreased exponentially without evidence of a peak in species richness at mid-elevations. This result is in contrast to many findings on altitudinal gradients in ants and other animal groups. Most ant species have a very limited altitudinal range leading to high turnover values when comparing communities of different altitudes. Of the ant species, 74% were even restricted to one site. As evident from this study, altitudinal ranges of species are very narrow. Elevational gradients are therefore extremely species-rich and might serve as a prime example of hot spots of biodiversity. This fact is of great concern when implementing conservation strategies.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Rogério Silvestre ◽  
Manoel F. Demétrio ◽  
Jacques H. C. Delabie

This paper describes habitat and geographic correlates of ant diversity in Serra da Bodoquena, a poorly surveyed region of central-western Brazil. We discuss leaf-litter ant diversity on a regional scale, with emphasis on the contribution of each of the processes that form the evolutionary basis of contemporary beta diversity. The diversity of leaf-litter ants was assessed from a series of 262 Winkler samples conducted in two microbasins within a deciduous forest domain. A total of 170 litter-dwelling ant species in 45 genera and 11 subfamilies was identified. The data showed that the study areas exhibited different arrangements of ant fauna, with a high turnover in species composition between sites, indicating high beta diversity. Our analysis suggests that the biogeographic history of this tropical dry forest in the centre of South America could explain ant assemblage structure more than competitive dominance. The co-occurrence analysis showed that species co-occur less often than expected by chance in only two of the localities, suggesting that, for most of the species, co-occurrences are random. The assessment of the structure of the diversity of litter-dwelling ants is the first step in understanding the beta diversity patterns in this region of great biogeographic importance.


2011 ◽  
Vol 366 (1582) ◽  
pp. 3256-3264 ◽  
Author(s):  
Paul Woodcock ◽  
David P. Edwards ◽  
Tom M. Fayle ◽  
Rob J. Newton ◽  
Chey Vun Khen ◽  
...  

South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.


2019 ◽  
Vol 43 (5) ◽  
pp. 437-456 ◽  
Author(s):  
Elmo Borges Azevedo KOCH ◽  
José Raimundo Maia dos SANTOS ◽  
Ivan Cardoso NASCIMENTO ◽  
Jacques Hubert Charles DELABIE

2001 ◽  
Vol 94 (3) ◽  
pp. 761-765 ◽  
Author(s):  
Changlu Wang ◽  
John Strazanac ◽  
Linda Butler

2012 ◽  
Vol 28 (5) ◽  
pp. 515-518 ◽  
Author(s):  
Juliana M. Silveira ◽  
Jos Barlow ◽  
Rafael B. Andrade ◽  
Luiz A. M. Mestre ◽  
Sébastien Lacau ◽  
...  

Fire is an important land-management tool in tropical forest landscapes. However, these fires sometimes escape into surrounding forests (Uhl & Buschbacker 1985), and are one of the most severe disturbances threatening tropical forest biodiversity (Barlowet al2006). These forest fires have become more frequent over the last decades due to the combined effect of selective logging, fragmentation and abnormal droughts that increase the flammability of forests, and agriculture expansion that brings the ignition sources (Aragão & Shimabukuro 2010).


2018 ◽  
Author(s):  
Melissa T. R. Hawkins ◽  
Miguel Camacho-Sanchez ◽  
Fred Tuh Yit Yuh ◽  
Jesus E Maldonado ◽  
Jennifer A Leonard

Biodiversity across elevational gradients generally follows patterns, the evolutionary origins of which are debated. We trapped small non-volant mammals across an elevational gradient on Mount (Mt.) Kinabalu (4,101 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We also included visual records and camera trap data from Mt. Tambuyukon. On Mt. Tambuyukon we trapped a total of 299 individuals from 23 species in 6,187 trap nights (4.8% success rate). For Mt. Kinabalu we trapped a total 213 animals from 19 species, in 2,044 trap nights, a 10.4% success rate. We documented the highest diversity in the low elevations for both mountains, unlike previous less complete surveys which supported a mid-elevation diversity bulge on Mt. Kinabalu. Species richness decreased gradually towards the highlands to a more even community with different species (high turnover), less rich but with the highest levels of endemism. These patterns suggest that an interplay of topography and climatic history of the region were drivers of the diversity gradient, in addition to standing climatic and spatial hypothesis.


2021 ◽  
Author(s):  
Gibran Renoy Pérez-Toledo ◽  
Fabricio Villalobos ◽  
Rogerio R. Silva ◽  
Claudia E. Moreno ◽  
Marcio Pie ◽  
...  

Abstract Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and β-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and inferred its putative driving forces. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constrains found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, more benign conditions at intermediate elevations suggest interspecific interactions being more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature distances probably due to narrow thermal tolerances inherit to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients.


2018 ◽  
Vol 15 (22) ◽  
pp. 7043-7057 ◽  
Author(s):  
Martin Ley ◽  
Moritz F. Lehmann ◽  
Pascal A. Niklaus ◽  
Jörg Luster

Abstract. Semi-terrestrial soils such as floodplain soils are considered potential hot spots of nitrous oxide (N2O) emissions. Microhabitats in the soil – such as within and outside of aggregates, in the detritusphere, and/or in the rhizosphere – are considered to promote and preserve specific redox conditions. Yet our understanding of the relative effects of such microhabitats and their interactions on N2O production and consumption in soils is still incomplete. Therefore, we assessed the effect of aggregate size, buried leaf litter, and plant–soil interactions on the occurrence of enhanced N2O emissions under simulated flooding/drying conditions in a mesocosm experiment. We used two model soils with equivalent structure and texture, comprising macroaggregates (4000–250 µm) or microaggregates (<250 µm) from a N-rich floodplain soil. These model soils were planted with basket willow (Salix viminalis L.), mixed with leaf litter or left unamended. After 48 h of flooding, a period of enhanced N2O emissions occurred in all treatments. The unamended model soils with macroaggregates emitted significantly more N2O during this period than those with microaggregates. Litter addition modulated the temporal pattern of the N2O emission, leading to short-term peaks of high N2O fluxes at the beginning of the period of enhanced N2O emission. The presence of S. viminalis strongly suppressed the N2O emission from the macroaggregate model soil, masking any aggregate-size effect. Integration of the flux data with data on soil bulk density, moisture, redox potential and soil solution composition suggest that macroaggregates provided more favourable conditions for spatially coupled nitrification–denitrification, which are particularly conducive to net N2O production. The local increase in organic carbon in the detritusphere appears to first stimulate N2O emissions; but ultimately, respiration of the surplus organic matter shifts the system towards redox conditions where N2O reduction to N2 dominates. Similarly, the low emission rates in the planted soils can be best explained by root exudation of low-molecular-weight organic substances supporting complete denitrification in the anoxic zones, but also by the inhibition of denitrification in the zone, where rhizosphere aeration takes place. Together, our experiments highlight the importance of microhabitat formation in regulating oxygen (O2) content and the completeness of denitrification in soils during drying after saturation. Moreover, they will help to better predict the conditions under which hot spots, and “hot moments”, of enhanced N2O emissions are most likely to occur in hydrologically dynamic soil systems like floodplain soils.


Sign in / Sign up

Export Citation Format

Share Document