Soft computing: fuzzy logic, neural networks and distributed artificial intelligence by F. Aminzadeh and M. Jamshidi (Eds.), PTR Prentice Hall, Englewood Cliffs, NJ, pp 301, ISBN 0-13-146234-2.

1996 ◽  
Vol 11 (2) ◽  
pp. 197-197
Author(s):  
Simon Parsons
2008 ◽  
pp. 31-37
Author(s):  
J. P. Panda ◽  
R. N. Satpathy

The field of soft computing embraces several techniques that have been inspired by nature but are mathematical. These techniques are artificial neural networks, fuzzy logic and evolutionary algorithms. Often these techniques are considered part of artificial intelligence, however the name artificial intelligence is more properly given to techniques which try to capture and emulate biological intelligence, such as expert systems and thinking computers. This paper focuses on the technology transfer issues and solutions when using soft computing for off line control of manufacturing processes. This paper will discuss each of these three techniques – neural networks, fuzzy logic and evolutionary algorithms - in turn and how they might be used in manufacturing. The kind of problems these techniques are best suited for will be defined, and competing techniques will be compared and contrasted.


Author(s):  
Amal Kilani ◽  
Ahmed Ben Hamida ◽  
Habib Hamam

In this chapter, the authors present a profound literature review of artificial intelligence (AI). After defining it, they briefly cover its history and enumerate its principal fields of application. They name, for example, information system, commerce, image processing, human-computer interaction, data compression, robotics, route planning, etc. Moreover, the test that defines an artificially intelligent system, called the Turing test, is also defined and detailed. Afterwards, the authors describe some AI tools such as fuzzy logic, genetic algorithms, and swarm intelligence. Special attention will be given to neural networks and fuzzy logic. The authors also present the future research directions and ethics.


2019 ◽  
Vol 28 (01) ◽  
pp. 027-034 ◽  
Author(s):  
Laszlo Balkanyi ◽  
Ronald Cornet

Introduction: Artificial intelligence (AI) is widespread in many areas, including medicine. However, it is unclear what exactly AI encompasses. This paper aims to provide an improved understanding of medical AI and its constituent fields, and their interplay with knowledge representation (KR). Methods: We followed a Wittgensteinian approach (“meaning by usage”) applied to content metadata labels, using the Medical Subject Headings (MeSH) thesaurus to classify the field. To understand and characterize medical AI and the role of KR, we analyzed: (1) the proportion of papers in MEDLINE related to KR and various AI fields; (2) the interplay among KR and AI fields and overlaps among the AI fields; (3) interconnectedness of fields; and (4) phrase frequency and collocation based on a corpus of abstracts. Results: Data from over eighty thousand papers showed a steep, six-fold surge in the last 30 years. This growth happened in an escalating and cascading way. A corpus of 246,308 total words containing 21,842 unique words showed several hundred occurrences of notions such as robotics, fuzzy logic, neural networks, machine learning and expert systems in the phrase frequency analysis. Collocation analysis shows that fuzzy logic seems to be the most often collocated notion. Neural networks and machine learning are also used in the conceptual neighborhood of KR. Robotics is more isolated. Conclusions: Authors note an escalation of published AI studies in medicine. Knowledge representation is one of the smaller areas, but also the most interconnected, and provides a common cognitive layer for other areas.


Author(s):  
Yuriy Konovalov ◽  
Anton Vaygachev

Trends in the development of artificial intelligence and the use of neural networks as applied to the power industry are considered. It is revealed that the well-known forecasting systems based on artificial neural networks are difficult to formalize and get an unambiguous solution. There fore, this problem must be solved using a systematic approach that combines the capabilities of artifi cial neural networks and fuzzy logic under conditions of partial uncertainty of parameters


Author(s):  
M.P.L. Perera

Adaptive e-learning the aim is to fill the gap between the pupil and the educator by discussing the needs and skills of individual learners. Artificial intelligence strategies that have the potential to simulate human decision-making processes are important around adaptive e-Learning. This paper explores the Artificial techniques; Fuzzy Logic, Neural Networks, Bayesian Networks and Genetic Algorithms, highlighting their contributions to the notion of the adaptability in the sense of Adaptive E-learning. The implementation of Artificial Neural Networks to resolve problems in the current Adaptive e-learning frameworks have been established.


Sign in / Sign up

Export Citation Format

Share Document