scholarly journals Parallel heuristic search in forward partial-order planning

2016 ◽  
Vol 31 (5) ◽  
pp. 417-428
Author(s):  
Oscar Sapena ◽  
Alejandro Torreño ◽  
Eva Onaindía

AbstractMost of the current top-performing planners are sequential planners that only handle total-order plans. Although this is a computationally efficient approach, the management of total-order plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper, we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL (Partial-Order Causal-Link Planning) paradigm. Working with partial-order plans allows FLAP2 to easily manage the parallelism of the plans, which brings several advantages: more flexible executions, shorter plan durations (makespan) and an easy adaptation to support new features like temporal or multi-agent planning. However, one of the limitations of POCL planners is that they require far more computational effort to deal with the interactions that arise among actions. FLAP2 minimizes this overhead by applying several techniques that improve its performance: the combination of different state-based heuristics and the use of parallel processes to diversify the search in different directions when a plateau is found. To evaluate the performance of FLAP2, we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, Temporal Fast Downward and OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between time and quality and a high coverage on the current planning benchmarks.

Author(s):  
Yanchen Deng ◽  
Bo An

Incomplete GDL-based algorithms including Max-sum and its variants are important methods for multi-agent optimization. However, they face a significant scalability challenge as the computational overhead grows exponentially with respect to the arity of each utility function. Generic Domain Pruning (GDP) technique reduces the computational effort by performing a one-shot pruning to filter out suboptimal entries. Unfortunately, GDP could perform poorly when dealing with dense local utilities and ties which widely exist in many domains. In this paper, we present several novel sorting-based acceleration algorithms by alleviating the effect of densely distributed local utilities. Specifically, instead of one-shot pruning in GDP, we propose to integrate both search and pruning to iteratively reduce the search space. Besides, we cope with the utility ties by organizing the search space of tied utilities into AND/OR trees to enable branch-and-bound. Finally, we propose a discretization mechanism to offer a tradeoff between the reconstruction overhead and the pruning efficiency. We demonstrate the superiorities of our algorithms over the state-of-the-art from both theoretical and experimental perspectives.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


2021 ◽  
Vol 37 (1-4) ◽  
pp. 1-30
Author(s):  
Vincenzo Agate ◽  
Alessandra De Paola ◽  
Giuseppe Lo Re ◽  
Marco Morana

Multi-agent distributed systems are characterized by autonomous entities that interact with each other to provide, and/or request, different kinds of services. In several contexts, especially when a reward is offered according to the quality of service, individual agents (or coordinated groups) may act in a selfish way. To prevent such behaviours, distributed Reputation Management Systems (RMSs) provide every agent with the capability of computing the reputation of the others according to direct past interactions, as well as indirect opinions reported by their neighbourhood. This last point introduces a weakness on gossiped information that makes RMSs vulnerable to malicious agents’ intent on disseminating false reputation values. Given the variety of application scenarios in which RMSs can be adopted, as well as the multitude of behaviours that agents can implement, designers need RMS evaluation tools that allow them to predict the robustness of the system to security attacks, before its actual deployment. To this aim, we present a simulation software for the vulnerability evaluation of RMSs and illustrate three case studies in which this tool was effectively used to model and assess state-of-the-art RMSs.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1928 ◽  
Author(s):  
Alfonso González-Briones ◽  
Fernando De La Prieta ◽  
Mohd Mohamad ◽  
Sigeru Omatu ◽  
Juan Corchado

This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings.


Author(s):  
Yanlin Han ◽  
Piotr Gmytrasiewicz

This paper introduces the IPOMDP-net, a neural network architecture for multi-agent planning under partial observability. It embeds an interactive partially observable Markov decision process (I-POMDP) model and a QMDP planning algorithm that solves the model in a neural network architecture. The IPOMDP-net is fully differentiable and allows for end-to-end training. In the learning phase, we train an IPOMDP-net on various fixed and randomly generated environments in a reinforcement learning setting, assuming observable reinforcements and unknown (randomly initialized) model functions. In the planning phase, we test the trained network on new, unseen variants of the environments under the planning setting, using the trained model to plan without reinforcements. Empirical results show that our model-based IPOMDP-net outperforms the other state-of-the-art modelfree network and generalizes better to larger, unseen environments. Our approach provides a general neural computing architecture for multi-agent planning using I-POMDPs. It suggests that, in a multi-agent setting, having a model of other agents benefits our decision-making, resulting in a policy of higher quality and better generalizability.


2020 ◽  
Vol 34 (04) ◽  
pp. 3858-3865
Author(s):  
Huijie Feng ◽  
Chunpeng Wu ◽  
Guoyang Chen ◽  
Weifeng Zhang ◽  
Yang Ning

Recently smoothing deep neural network based classifiers via isotropic Gaussian perturbation is shown to be an effective and scalable way to provide state-of-the-art probabilistic robustness guarantee against ℓ2 norm bounded adversarial perturbations. However, how to train a good base classifier that is accurate and robust when smoothed has not been fully investigated. In this work, we derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart when training the base classifier. It is computationally efficient and can be implemented in parallel with other empirical defense methods. We discuss how to implement it under both standard (non-adversarial) and adversarial training scheme. At the same time, we also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability. Our extensive experimentation demonstrates the effectiveness of the proposed training and certification approaches on CIFAR-10 and ImageNet datasets.


Author(s):  
Kaixuan Chen ◽  
Lina Yao ◽  
Dalin Zhang ◽  
Bin Guo ◽  
Zhiwen Yu

Multi-modality is an important feature of sensor based activity recognition. In this work, we consider two inherent characteristics of human activities, the spatially-temporally varying salience of features and the relations between activities and corresponding body part motions. Based on these, we propose a multi-agent spatial-temporal attention model. The spatial-temporal attention mechanism helps intelligently select informative modalities and their active periods. And the multiple agents in the proposed model represent activities with collective motions across body parts by independently selecting modalities associated with single motions. With a joint recognition goal, the agents share gained information and coordinate their selection policies to learn the optimal recognition model. The experimental results on four real-world datasets demonstrate that the proposed model outperforms the state-of-the-art methods.


2020 ◽  
Author(s):  
Yan Gao ◽  
Yongzhuang Liu ◽  
Yanmei Ma ◽  
Bo Liu ◽  
Yadong Wang ◽  
...  

AbstractSummaryPartial order alignment, which aligns a sequence to a directed acyclic graph, is now frequently used as a key component in long-read error correction and assembly. We present abPOA (adaptive banded Partial Order Alignment), a Single Instruction Multiple Data (SIMD) based C library for fast partial order alignment using adaptive banded dynamic programming. It can work as a stand-alone multiple sequence alignment and consensus calling tool or be easily integrated into any long-read error correction and assembly workflow. Compared to a state-of-the-art tool (SPOA), abPOA is up to 15 times faster with a comparable alignment accuracy.Availability and implementationabPOA is implemented in C. A stand-alone tool and a C/Python software interface are freely available at https://github.com/yangao07/[email protected] or [email protected]


2010 ◽  
Vol 39 ◽  
pp. 217-268 ◽  
Author(s):  
M. O. Riedl ◽  
R. M. Young

Narrative, and in particular storytelling, is an important part of the human experience. Consequently, computational systems that can reason about narrative can be more effective communicators, entertainers, educators, and trainers. One of the central challenges in computational narrative reasoning is narrative generation, the automated creation of meaningful event sequences. There are many factors -- logical and aesthetic -- that contribute to the success of a narrative artifact. Central to this success is its understandability. We argue that the following two attributes of narratives are universal: (a) the logical causal progression of plot, and (b) character believability. Character believability is the perception by the audience that the actions performed by characters do not negatively impact the audience's suspension of disbelief. Specifically, characters must be perceived by the audience to be intentional agents. In this article, we explore the use of refinement search as a technique for solving the narrative generation problem -- to find a sound and believable sequence of character actions that transforms an initial world state into a world state in which goal propositions hold. We describe a novel refinement search planning algorithm -- the Intent-based Partial Order Causal Link (IPOCL) planner -- that, in addition to creating causally sound plot progression, reasons about character intentionality by identifying possible character goals that explain their actions and creating plan structures that explain why those characters commit to their goals. We present the results of an empirical evaluation that demonstrates that narrative plans generated by the IPOCL algorithm support audience comprehension of character intentions better than plans generated by conventional partial-order planners.


Author(s):  
Ryo Kuroiwa ◽  
Alex Fukunaga

Although symbolic bidirectional search is successful in optimal classical planning, state-of-the-art satisficing planners do not use bidirectional search. Previous bidirectional search planners for satisficing planning behaved similarly to a trivial portfolio, which independently executes forward and backward search without the desired ``meet-in-the-middle'' behavior of bidirectional search where the forward and backward search frontiers intersect at some point relatively far from the forward and backward start states. In this paper, we propose Top-to-Top Bidirectional Search (TTBS), a new bidirectional search strategy with front-to-front heuristic evaluation. We show that TTBS strongly exhibits ``meet-in-the-middle'' behavior and can solve instances solved by neither forward nor backward search on a number of domains.


Sign in / Sign up

Export Citation Format

Share Document