The Natural X-ray Spectrum of Radium B

1925 ◽  
Vol 22 (6) ◽  
pp. 834-837 ◽  
Author(s):  
Ernest Rutherford ◽  
W. A. Wooster

It is now well known that radium B is an isotope of lead of atomic number 82 with a mass 214, and consequently, if the atoms of radium B are bombarded by an external source of electrons, the spectrum excited in it should be identical with that of lead atomic number 82. A very interesting question arises with regard to the L radiation emitted by a source of radium B during its spontaneous transformation. At the moment of the expulsion of the disintegration electron from radium B, the internal atomic structure of radium B corresponds to an element of number 82, but an instant later, when the electron has escaped from the nucleus, the charge on the latter is 83 and there must follow a reorganisation of the external electrons. Under these conditions, we cannot be certain whether the L spectrum of radium B should correspond to an element of number 82 or 83. Since the excitation of the L spectrum is for the most part due to the action of the rays from the nucleus, the spectrum should correspond to number 82 if the emission of the γ-ray precedes the escape of the disintegration electron and number 83 if it is subsequent to this process.

Author(s):  
M.D. Ball ◽  
H. Lagace ◽  
M.C. Thornton

The backscattered electron coefficient η for transmission electron microscope specimens depends on both the atomic number Z and the thickness t. Hence for specimens of known atomic number, the thickness can be determined from backscattered electron coefficient measurements. This work describes a simple and convenient method of estimating the thickness and the corrected composition of areas of uncertain atomic number by combining x-ray microanalysis and backscattered electron intensity measurements.The method is best described in terms of the flow chart shown In Figure 1. Having selected a feature of interest, x-ray microanalysis data is recorded and used to estimate the composition. At this stage thickness corrections for absorption and fluorescence are not performed.


Author(s):  
Robert E. Ogilvie

The search for an empirical absorption equation begins with the work of Siegbahn (1) in 1914. At that time Siegbahn showed that the value of (μ/ρ) for a given element could be expressed as a function of the wavelength (λ) of the x-ray photon by the following equationwhere C is a constant for a given material, which will have sudden jumps in value at critial absorption limits. Siegbahn found that n varied from 2.66 to 2.71 for various solids, and from 2.66 to 2.94 for various gases.Bragg and Pierce (2) , at this same time period, showed that their results on materials ranging from Al(13) to Au(79) could be represented by the followingwhere μa is the atomic absorption coefficient, Z the atomic number. Today equation (2) is known as the “Bragg-Pierce” Law. The exponent of 5/2(n) was questioned by many investigators, and that n should be closer to 3. The work of Wingardh (3) showed that the exponent of Z should be much lower, p = 2.95, however, this is much lower than that found by most investigators.


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


Author(s):  
Y. Y. Wang ◽  
H. Zhang ◽  
V. P. Dravid ◽  
H. Zhang ◽  
L. D. Marks ◽  
...  

Azuma et al. observed planar defects in a high pressure synthesized infinitelayer compound (i.e. ACuO2 (A=cation)), which exhibits superconductivity at ~110 K. It was proposed that the defects are cation deficient and that the superconductivity in this material is related to the planar defects. In this report, we present quantitative analysis of the planar defects utilizing nanometer probe xray microanalysis, high resolution electron microscopy, and image simulation to determine the chemical composition and atomic structure of the planar defects. We propose an atomic structure model for the planar defects.Infinite-layer samples with the nominal chemical formula, (Sr1-xCax)yCuO2 (x=0.3; y=0.9,1.0,1.1), were prepared using solid state synthesized low pressure forms of (Sr1-xCax)CuO2 with additions of CuO or (Sr1-xCax)2CuO3, followed by a high pressure treatment.Quantitative x-ray microanalysis, with a 1 nm probe, was performed using a cold field emission gun TEM (Hitachi HF-2000) equipped with an Oxford Pentafet thin-window x-ray detector. The probe was positioned on the planar defects, which has a 0.74 nm width, and x-ray emission spectra from the defects were compared with those obtained from vicinity regions.


2020 ◽  
Vol 2020 (14) ◽  
pp. 293-1-293-7
Author(s):  
Ankit Manerikar ◽  
Fangda Li ◽  
Avinash C. Kak

Dual Energy Computed Tomography (DECT) is expected to become a significant tool for voxel-based detection of hazardous materials in airport baggage screening. The traditional approach to DECT imaging involves collecting the projection data using two different X-ray spectra and then decomposing the data thus collected into line integrals of two independent characterizations of the material properties. Typically, one of these characterizations involves the effective atomic number (Zeff) of the materials. However, with the X-ray spectral energies typically used for DECT imaging, the current best-practice approaches for dualenergy decomposition yield Zeff values whose accuracy range is limited to only a subset of the periodic-table elements, more specifically to (Z < 30). Although this estimation can be improved by using a system-independent ρe — Ze (SIRZ) space, the SIRZ transformation does not efficiently model the polychromatic nature of the X-ray spectra typically used in physical CT scanners. In this paper, we present a new decomposition method, AdaSIRZ, that corrects this shortcoming by adapting the SIRZ decomposition to the entire spectrum of an X-ray source. The method reformulates the X-ray attenuation equations as direct functions of (ρe, Ze) and solves for the coefficients using bounded nonlinear least-squares optimization. Performance comparison of AdaSIRZ with other Zeff estimation methods on different sets of real DECT images shows that AdaSIRZ provides a higher output accuracy for Zeff image reconstructions for a wider range of object materials.


2020 ◽  
Vol 18 (45) ◽  
pp. 21-31
Author(s):  
Salman Zaidan Khalaf ◽  
Khaleel Abrahim ◽  
Imad Kassar Akeab

    X-ray emission contains some of the gaseous properties is produced when the particles of the solar wind strike the atmosphere of comet ISON and PanSTARRS Comets. The data collected with NASA Chandra X-ray Observatory of the two comets, C/2012 S1 (also known as Comet ISON) and C/2011 S4 (Comet PanSTARRS) are used in this study.    The real abundance of the observed X-ray spectrum elements has been extracted by a new simple mathematic model. The study found some physical properties of these elements in the comet’s gas such as a relationship between the abundance with emitted energy. The elements that have emission energy (2500-6800) eV, have abundance (0.1-0.15) %, while the elements that have emission energy (850-2500) eV and (6800-9250) eV have abundance (0.2-0.3) %.    The relation between interacted energy and atomic number is form two sets.  The interacted energy of each element is increased as the atomic number increased. This case has been seen in both comets


1991 ◽  
Vol 9 (2) ◽  
pp. 493-499
Author(s):  
D. Naccache ◽  
J-L. Bourgade ◽  
P. Combis ◽  
C. J. Keane ◽  
J-P. Le Breton ◽  
...  

We present some significant results of collisional excitation X-ray laser experiments in plasmas produced by a laser. We studied the amplification in Ne- and Ni-like ions by varying both the nature and the thickness of targets, the irradiation, and the wavelength of the driving laser. Some potentially interesting scalings as a function of the atomic number of the lasing element are demonstrated in the Ne-like system. An order-of-magnitude increase in gain in the Ni-like experiments was determined.


Sign in / Sign up

Export Citation Format

Share Document