A note on lemmas of Green and Kondo

Author(s):  
A. O. Morris

Let R be the field of rational numbers, {x} = {x1, z2, …}, {y} = {y1, y2, …} be two countably infinite sets of variables and t an indeterminate. Let (λ) = (λ1, λ2, …, λm) be a partition of n. Then Littlewood (5) has shown thatcan be expressed in the formwhere Qλ(x, t) and Qλ(y, t) denote certain symmetric functions on the sets {x} and {y} respectively. In additionwhere is the partition of n conjugate to (λ). In fact, Littlewood (5) showed thatwhere the summation is over all terms obtained by permutations of the variables xi (i = 1, 2, …) and.

2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


1974 ◽  
Vol 26 (6) ◽  
pp. 1351-1355 ◽  
Author(s):  
Ronald J. Leach

Let denote the family of all functions of the formthat are analytic in the unit disc U, f′(z) ≠ 0 in U and f maps U onto a domain of boundary rotation at most . Recently Brannan, Clunie and Kirwan [2] and Aharonov and Friedland [1] have solved the problem of estimating |amp+1| for all , provided m = 1.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


1969 ◽  
Vol 12 (5) ◽  
pp. 615-623 ◽  
Author(s):  
K.V. Menon

The generating series for the elementary symmetric function Er, the complete symmetric function Hr, are defined byrespectively.


Author(s):  
A. J. Jayanthan ◽  
V. Kannan

AbstractLet Q be the space of all rational numbers and (X, τ) be a topological space where X is countably infinite. Here we prove that (1) τ is the join of two topologies on X both homeomorphic to Q if and only if τ is non-compact and metrizable, and (2) τ is the join of topologies on X each homeomorphic to Q if and only if τ is Tychonoff and noncompact.


1929 ◽  
Vol 24 ◽  
pp. i-iii
Author(s):  
John Dougall

An identity involving symmetric functions of n letters may in a certain class of cases be extended immediately to a greater number of letters.For example, the theoremmay be writtenand in the latter form it is true for any number of letters.


2009 ◽  
Vol 51 (3) ◽  
pp. 571-578 ◽  
Author(s):  
G. A. AFROUZI ◽  
H. GHORBANI

AbstractWe consider the system where p(x), q(x) ∈ C1(RN) are radial symmetric functions such that sup|∇ p(x)| < ∞, sup|∇ q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞, where −Δp(x)u = −div(|∇u|p(x)−2∇u), −Δq(x)v = −div(|∇v|q(x)−2∇v), respectively are called p(x)-Laplacian and q(x)-Laplacian, λ1, λ2, μ1 and μ2 are positive parameters and Ω = B(0, R) ⊂ RN is a bounded radial symmetric domain, where R is sufficiently large. We prove the existence of a positive solution when for every M > 0, $\lim_{u \rightarrow +\infty} \frac{h(u)}{u^{p^--1}} = 0$ and $\lim_{u \rightarrow +\infty} \frac{\gamma(u)}{u^{q^--1}} = 0$. In particular, we do not assume any sign conditions on f(0), g(0), h(0) or γ(0).


1994 ◽  
Vol 116 (3) ◽  
pp. 385-389 ◽  
Author(s):  
Le Maohua

Let ℤ, ℕ, ℚ denote the sets of integers, positive integers and rational numbers, respectively. Solutions (x, y, m, n) of the equation (1) have been investigated in many papers:Let ω(m), ρ(m) denote the number of distinct prime factors and the greatest square free factor of m, respectively. In this note we prove the following results.


Author(s):  
V. J. Baston

In (l) Hunter proved that the complete symmetric functions of even order are positive definite by obtaining the inequalitywhere ht denotes the complete symmetric function of order t. In this note we show that the inequality can be strengthened, which, in turn, enables theorem 2 of (l) to be sharpened. We also obtain a special case of an inequality conjectured by McLeod(2).


1996 ◽  
Vol 38 (2) ◽  
pp. 147-155 ◽  
Author(s):  
A. J. van der Poorten ◽  
I. E. Shparlinski

We consider sequences (Ah)defined over the field ℚ of rational numbers and satisfying a linear homogeneous recurrence relationwith polynomial coefficients sj;. We shall assume without loss of generality, as we may, that the sj, are defined over ℤ and the initial values A0A]…, An−1 are integer numbers. Also, without loss of generality we may assume that S0 and Sn have no non-negative integer zero. Indeed, any other case can be reduced to this one by making a shift h → h – l – 1 where l is an upper bound for zeros of the corresponding polynomials (and which can be effectively estimated in terms of their heights)


Sign in / Sign up

Export Citation Format

Share Document