Seiches over parabolic bottoms

1967 ◽  
Vol 63 (4) ◽  
pp. 1167-1175
Author(s):  
E. V. Laitone

AbstractThe solutions are derived for the shallow water standing waves of small amplitude that can form in channels or lakes of varying breadth with a concave parabolic bottom. In addition explicit solutions are given for standing waves in a ring-type lake with a parabolic bottom and a central circular island that has vertical walls.

1968 ◽  
Vol 31 (4) ◽  
pp. 779-788 ◽  
Author(s):  
J. E. Ffowcs Williams ◽  
D. L. Hawkings

Small amplitude waves on a shallow layer of water are studied from the point of view used in aerodynamic sound theory. It is shown that many aspects of the generation and propagation of water waves are similar to those of sound waves in air. Certain differences are also discussed. It is concluded that shallow water simulation can be employed in the study of some aspects of aerodynamically generated sound.


2018 ◽  
Vol 839 ◽  
pp. 408-429 ◽  
Author(s):  
Jim Thomas ◽  
Oliver Bühler ◽  
K. Shafer Smith

Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.


2006 ◽  
Author(s):  
Claudio Zanzi ◽  
Pablo Go´mez ◽  
Julia´n Palacios ◽  
Joaqui´n Lo´pez ◽  
Julio Herna´ndez

A numerical study of the impact of shallow-water waves on vertical walls is presented. The air-liquid flow was simulated using a code for incompressible viscous flow, based on a local level set algorithm and a second-order approximate projection method. The level set transport and reinitialization equations were solved in a narrow band around the interface using an adaptive refined grid. The wave is assumed to be generated by a plunger which is accelerated in an open channel containing water. An arbitrary Lagrangian-Eulerian method was used to take into account the relative movement between the plunger and the end wall of the channel. The evolution of the free surface was visualized using a laser light sheet and a high-speed camera, with a sampling frequency of 1000 Hz. Several simulations were carried out to investigate the influence of the shape of the wave approaching the wall on the relevant quantities associated with the impact. The wave shape just before the impact was changed varying the total length of the channel. The results are compared with experimental results and with results obtained by other authors.


1958 ◽  
Vol 4 (1) ◽  
pp. 97-109 ◽  
Author(s):  
G. F. Carrier ◽  
H. P. Greenspan

In this paper, we investigate the behaviour of a wave as it climbs a sloping beach. Explicit solutions of the equations of the non-linear inviscid shallow-water theory are obtained for several physically interesting wave-forms. In particular it is shown that waves can climb a sloping beach without breaking. Formulae for the motions of the instantaneous shoreline as well as the time histories of specific wave-forms are presented.


2002 ◽  
Vol 2002.40 (0) ◽  
pp. 293-294
Author(s):  
Fumio YOSHINO ◽  
Masaki AGURO ◽  
Hiroshi IWATA ◽  
Kyouta INOUE

Author(s):  
D. H. Peregrine ◽  
Ronald Smith

AbstractThe basic state considered in this paper is a parallel flow of a jet-like character with the centre of the jet being at or near a free surface which is horizontal. Stationary surface gravity waves may exist on such a flow, and a number of examples are looked at for small amplitude waves. Explicit solutions are given for ‘top-hat’ profile jets and for two-dimensional flows. Asymptotic solutions are developed for stationary waves of large wave-number.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
C. Y. Wang

Abstract The classical theory of small amplitude shallow water waves is applied to regular polygonal basins. The natural frequencies of the basins are related to the eigenvalues of the Helmholtz equation. Exact solutions are presented for triangular, square, and circular basins while pentagonal, hexagonal, and octagonal basins are solved, for the first time, by an efficient Ritz method. The first five eigenvalues of each basin are tabulated and the corresponding mode shapes are discussed. Tileability conditions are presented. Some modes (eigenmodes) can be tiled into larger domains.


Sign in / Sign up

Export Citation Format

Share Document