Characterizations of certain multivariate distributions

1974 ◽  
Vol 75 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Y. H. Wang

Let X1, X2, …, Xn, be n (n ≥ 2) independent observations on a one-dimensional random variable X with distribution function F. Letbe the sample mean andbe the sample variance. In 1925, Fisher (2) showed that if the distribution function F is normal then and S2 are stochastically independent. This property was used to derive the student's t-distribution which has played a very important role in statistics. In 1936, Geary(3) proved that the independence of and S2 is a sufficient condition for F to be a normal distribution under the assumption that F has moments of all order. Later, Lukacs (14) proved this result assuming only the existence of the second moment of F. The assumption of the existence of moments of F was subsequently dropped in the proofs given by Kawata and Sakamoto (7) and by Zinger (27). Thus the independence of and S2 is a characterizing property of the normal distribution.

1961 ◽  
Vol 1 (5) ◽  
pp. 265-272 ◽  
Author(s):  
Paul Markham Kahn

In his recent paper, “An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance”, presented to the XVIth International Congress of Actuaries, Dr. Karl Borch considers the problem of minimizing the variance of the total claims borne by the ceding insurer. Adopting this variance as a measure of risk, he considers as the most efficient reinsurance scheme that one which serves to minimize this variance. If x represents the amount of total claims with distribution function F (x), he considers a reinsurance scheme as a transformation of F (x). Attacking his problem from a different point of view, we restate and prove it for a set of transformations apparently wider than that which he allows.The process of reinsurance substitutes for the amount of total claims x a transformed value Tx as the liability of the ceding insurer, and hence a reinsurance scheme may be described by the associated transformation T of the random variable x representing the amount of total claims, rather than by a transformation of its distribution as discussed by Borch. Let us define an admissible transformation as a Lebesgue-measurable transformation T such thatwhere c is a fixed number between o and m = E (x). Condition (a) implies that the insurer will never bear an amount greater than the actual total claims. In condition (b), c represents the reinsurance premium, assumed fixed, and is equal to the expected value of the difference between the total amount of claims x and the total retained amount of claims Tx borne by the insurer.


2020 ◽  
pp. 166-169
Author(s):  
Олександр Володимирович Томашевський ◽  
Геннадій Валентинович Сніжной

The operational efficiency of measuring equipment (ME) is important in determining the cost of maintaining ME. To characterize the operational efficiency of the ME, an efficiency indicator has been introduced, an increase of which will reduce costs caused by the release of defective products due to the use of ME with unreliable indications. Over time, the ME parameters change under the influence of external factors and the ME aging processes inevitably occur, as a result of which the parameters of the ME metrological service system change. Therefore, in the general case, the parameters of the metrological maintenance system of ME should be considered as random variables. Accordingly, the efficiency indicator of measuring instruments is also a random variable, for the determination of which it is advisable to apply the methods of mathematical statistics and computer simulation. The performance indicator depends on the parameters of the metrological maintenance ME system, such as the calibration interval, the time spent by the ME on metrological maintenance, and the likelihood of ME failure-free operation. As a random variable, the efficiency indicator has a certain distribution function. To determine the distribution function of the efficiency indicator and the corresponding statistical characteristics, a computer simulation method was used. A study was made of the influence on the indicator of the effectiveness of the parameters of the metrological maintenance system ME (interesting interval, the failure rate of ME). The value of the verification interval and the failure rate of MEs varied over a wide range typical of real production. The time spent by ME on metrological services is considered as a random variable with a normal distribution law. To obtain random numbers with a normal distribution law, the Box-Muller method is used. After modeling, the statistical processing of the obtained results was done. It is shown that in real production, the efficiency indicator has a normal distribution law and the value of the efficiency indicator with an increase in the calibration interval does not practically change.


1966 ◽  
Vol 9 (4) ◽  
pp. 509-514
Author(s):  
W.R. McGillivray ◽  
C.L. Kaller

If Fn is the distribution function of a distribution n with moments up to order n equal to those of the standard normal distribution, then from Kendall and Stuart [1, p.87],


1980 ◽  
Vol 17 (01) ◽  
pp. 134-144 ◽  
Author(s):  
Yoshiaki Itoh

Let L(t) be the random variable which represents the minimum of length of gaps generated by random packing of unit intervals into [0, t]. We have with Using this equation the asymptotic behaviour of P(L(x)≧h) is discussed.


1990 ◽  
Vol 27 (03) ◽  
pp. 586-597 ◽  
Author(s):  
Suojin Wang

A saddlepoint approximation is derived for the cumulative distribution function of the sample mean of n independent bivariate random vectors. The derivations use Lugannani and Rice's saddlepoint formula and the standard bivariated normal distribution function. The separate versions of the approximation for the discrete cases are also given. A Monte Carlo study shows that the new approximation is very accurate.


1970 ◽  
Vol 7 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Richard A. Olshen ◽  
Leonard J. Savage

Khintchine (1938) showed that a real random variable Z has a unimodal distribution with mode at 0 iff Z ~ U X (that is, Z is distributed like U X), where U is uniform on [0, 1] and U and X are independent. Isii ((1958), page 173) defines a modified Stieltjes transform of a distribution function F for w complex thus: Apparently unaware of Khintchine's work, he proved (pages 179-180) that F is unimodal with mode at 0 iff there is a distribution function Φ for which . The equivalence of Khintchine's and Isii's results is made vivid by a proof (due to L. A. Shepp) in the next section.


1999 ◽  
Vol 29 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Virginia R. Young

Christofides (1998) studies the proportional hazards (PH) transform of Wang (1995) and shows that for some parametric families, the PH premium principle reduces to the standard deviation (SD) premium principle. Christofides conjectures that for a parametric family of distributions with constant skewness, the PH premium principle reduces to the SD principle. I will show that this conjecture is false in general but that it is true for location-scale families and for certain other families.Wang's premium principle has been established as a sound measure of risk in Wang (1995, 1996), Wang, Young, and Panjer (1997), and Wang and Young (1998). Determining when the SD premium principle is a special case of Wang's premium principle is important because it will help identify circumstances under which the more easily applied SD premium principle is a reliable measure of risk.First, recall that a distortion g is a non-decreasing function from [0, 1] onto itself. Wang's premium principle, with a fixed distortion g, associates the following certainty equivalent with a random variable X, (Wang, 1996) and (Denneberg, 1994):in which Sx is the decumulative distribution function (ddf) of X, Sx(t) = Pr(X > t), t ∈ R. If g is a power distortion, g(p) = pc, then Hg is the proportional hazards (PH) premium principle (Wang, 1995).Second, recall that a location-scale family of ddfs is , in which Sz is a fixed ddf. Alternatively, if Z has ddf Sz, then {X = μ + σZ: μ∈ R, σ > 0} forms a location-scale family of random variables, and the ddf of . Examples of location-scale families include the normal, Cauchy, logistic, and uniform families (Lehmann, 1991, pp. 20f). In the next proposition, I show that Wang's premium principle reduces to the SD premium principle on a location-scale family. Christofides (1998) observes this phenomenon in several special cases.


1999 ◽  
Vol 31 (1) ◽  
pp. 178-198 ◽  
Author(s):  
Frans A. Boshuizen ◽  
Robert P. Kertz

In this paper, in work strongly related with that of Coffman et al. [5], Bruss and Robertson [2], and Rhee and Talagrand [15], we focus our interest on an asymptotic distributional comparison between numbers of ‘smallest’ i.i.d. random variables selected by either on-line or off-line policies. Let X1,X2,… be a sequence of i.i.d. random variables with distribution function F(x), and let X1,n,…,Xn,n be the sequence of order statistics of X1,…,Xn. For a sequence (cn)n≥1 of positive constants, the smallest fit off-line counting random variable is defined by Ne(cn) := max {j ≤ n : X1,n + … + Xj,n ≤ cn}. The asymptotic joint distributional comparison is given between the off-line count Ne(cn) and on-line counts Nnτ for ‘good’ sequential (on-line) policies τ satisfying the sum constraint ∑j≥1XτjI(τj≤n) ≤ cn. Specifically, for such policies τ, under appropriate conditions on the distribution function F(x) and the constants (cn)n≥1, we find sequences of positive constants (Bn)n≥1, (Δn)n≥1 and (Δ'n)n≥1 such that for some non-degenerate random variables W and W'. The major tools used in the paper are convergence of point processes to Poisson random measure and continuous mapping theorems, strong approximation results of the normalized empirical process by Brownian bridges, and some renewal theory.


1970 ◽  
Vol 7 (03) ◽  
pp. 734-746
Author(s):  
Kenny S. Crump ◽  
David G. Hoel

Suppose F is a one-dimensional distribution function, that is, a function from the real line to the real line that is right-continuous and non-decreasing. For any such function F we shall write F{I} = F(b)– F(a) where I is the half-open interval (a, b]. Denote the k-fold convolution of F with itself by Fk* and let Now if z is a non-negative function we may form the convolution although Z may be infinite for some (and possibly all) points.


1971 ◽  
Vol 8 (04) ◽  
pp. 716-723 ◽  
Author(s):  
A. E. Gibson ◽  
B. W. Conolly

Consider the real-valued stochastic process {S(t), 0 ≦ t < ∞} which assumes values in an arbitrary space X. For a given subset T ⊂ X we define which represents the length in time of a visit to state T. We shall restrict ourselves to processes such that τT is a random variable having a differentiable distribution function which is independent of the time t 0 at which the visit to state T begins.


Sign in / Sign up

Export Citation Format

Share Document