Groups of automorphisms of Abelian 1-groups

1975 ◽  
Vol 77 (2) ◽  
pp. 241-245 ◽  
Author(s):  
B. Hartley

Following Robinson(4), we shall use the term Abelian1-group to describe an Abelian group A of finite (Mal'cev special or Prüfer) rank, whose torsion subgroup T is Černikov. These groups were called Abelian groups of type A3 by Mal'cev (3). Let G = Aut A. It is not hard to see that G/CG(A/T) and G/CG(T) are linear groups, and CG(A/T) ∩ CG(T) is Abelian. We improve on this observation by provingTheorem 1. The group G contains a normal Abelian Černikov subgroup G0, such that G/G0is linear over a field of characteristic zero.

2017 ◽  
Vol 16 (05) ◽  
pp. 1750086
Author(s):  
Mohammad Naghshinehfard

We compute the autocentral and autoderived series of a finite abelian group [Formula: see text] corresponding to several groups of automorphisms [Formula: see text]. As a result, we determine the autonilpotency and autosolvability of [Formula: see text] with respect to [Formula: see text].


Author(s):  
B. A. F. Wehrfritz

AbstractIf X is a group-class, a group G is right X-Engel if for all g in G there exists an X-subgroup E of G such that for all x in G there is a positive integer m(x) with [g, nx] ∈ E for all n ≥ m(x). Let G be a linear group. Special cases of our main theorem are the following. If X is the class of all Chernikov groups, or all finite groups, or all locally finite groups, then G is right X-Engel if and only if G has a normal X-subgroup modulo which G is hypercentral. The same conclusion holds if G has positive characteristic and X is one of the following classes; all polycyclic-by-finite groups, all groups of finite Prüfer rank, all minimax groups, all groups with finite Hirsch number, all soluble-by-finite groups with finite abelian total rank. In general the characteristic zero case is more complex.


2019 ◽  
Vol 100 (1) ◽  
pp. 68-75
Author(s):  
CRISTINA ACCIARRI ◽  
ANDREA LUCCHINI

For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.


2002 ◽  
Vol 01 (04) ◽  
pp. 375-389 ◽  
Author(s):  
B. A. F. WEHRFRITZ

In this paper we attempt to describe the structure of groups G of automorphisms of an abelian group M with the property that M(g - 1) is finite for every element g of G. These groups are closely related to the finitary linear groups over finite fields. The abelian case is critical for our work and the core result of this paper is the following. An abelian group A is isomorphic to a group G as above with M torsion if and only if A is torsion and has a residually-finite subgroup B with A/B a direct sum of cyclic groups.


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


Author(s):  
Fysal Hasani ◽  
Fatemeh Karimi ◽  
Alireza Najafizadeh ◽  
Yousef Sadeghi

AbstractThe square subgroup of an abelian group


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


Sign in / Sign up

Export Citation Format

Share Document