Canonical number systems, counting automata and fractals

2002 ◽  
Vol 133 (1) ◽  
pp. 163-182 ◽  
Author(s):  
KLAUS SCHEICHER ◽  
JÖRG M. THUSWALDNER

In this paper we study properties of the fundamental domain [Fscr ]β of number systems, which are defined in rings of integers of number fields. First we construct addition automata for these number systems. Since [Fscr ]β defines a tiling of the n-dimensional vector space, we ask, which tiles of this tiling ‘touch’ [Fscr ]β. It turns out that the set of these tiles can be described with help of an automaton, which can be constructed via an easy algorithm which starts with the above-mentioned addition automaton. The addition automaton is also useful in order to determine the box counting dimension of the boundary of [Fscr ]β. Since this boundary is a so-called graph-directed self-affine set, it is not possible to apply the general theory for the calculation of the box counting dimension of self similar sets. Thus we have to use direct methods.

2021 ◽  
Author(s):  
Nicholas Dudu ◽  
Arturo Rodriguez ◽  
Gael Moran ◽  
Jose Terrazas ◽  
Richard Adansi ◽  
...  

Abstract Atmospheric turbulence studies indicate the presence of self-similar scaling structures over a range of scales from the inertial outer scale to the dissipative inner scale. A measure of this self-similar structure has been obtained by computing the fractal dimension of images visualizing the turbulence using the widely used box-counting method. If applied blindly, the box-counting method can lead to misleading results in which the edges of the scaling range, corresponding to the upper and lower length scales referred to above are incorporated in an incorrect way. Furthermore, certain structures arising in turbulent flows that are not self-similar can deliver spurious contributions to the box-counting dimension. An appropriately trained Convolutional Neural Network can take account of both the above features in an appropriate way, using as inputs more detailed information than just the number of boxes covering the putative fractal set. To give a particular example, how the shape of clusters of covering boxes covering the object changes with box size could be analyzed. We will create a data set of decaying isotropic turbulence scenarios for atmospheric turbulence using Large-Eddy Simulations (LES) and analyze characteristic structures arising from these. These could include contours of velocity magnitude, as well as of levels of a passive scalar introduced into the simulated flows. We will then identify features of the structures that can be used to train the networks to obtain the most appropriate fractal dimension describing the scaling range, even when this range is of limited extent, down to a minimum of one order of magnitude.


Fractals ◽  
2017 ◽  
Vol 25 (01) ◽  
pp. 1730001 ◽  
Author(s):  
JUN WANG ◽  
KUI YAO

In this paper, we mainly discuss fractal dimensions of continuous functions with unbounded variation. First, we prove that Hausdorff dimension, Packing dimension and Modified Box-counting dimension of continuous functions containing one UV point are [Formula: see text]. The above conclusion still holds for continuous functions containing finite UV points. More generally, we show the result that Hausdorff dimension of continuous functions containing countable UV points is [Formula: see text] also. Finally, Box dimension of continuous functions containing countable UV points has been proved to be [Formula: see text] when [Formula: see text] is self-similar.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


1992 ◽  
Vol 111 (1) ◽  
pp. 169-179 ◽  
Author(s):  
K. J. Falconer

AbstractA family {S1, ,Sk} of contracting affine transformations on Rn defines a unique non-empty compact set F satisfying . We obtain estimates for the Hausdorff and box-counting dimensions of such sets, and in particular derive an exact expression for the box-counting dimension in certain cases. These estimates are given in terms of the singular value functions of affine transformations associated with the Si. This paper is a sequel to 4, which presented a formula for the dimensions that was valid in almost all cases.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1382
Author(s):  
Roger D. Maddux

The Theorems of Pappus and Desargues (for the projective plane over a field) are generalized here by two identities involving determinants and cross products. These identities are proved to hold in the three-dimensional vector space over a field. They are closely related to the Arguesian identity in lattice theory and to Cayley-Grassmann identities in invariant theory.


Sign in / Sign up

Export Citation Format

Share Document