Metric properties of some fractal sets and applications of inverse pressure

2009 ◽  
Vol 148 (3) ◽  
pp. 553-572 ◽  
Author(s):  
EUGEN MIHAILESCU

AbstractWe consider iterations of smooth non-invertible maps on manifolds of real dimension 4, which are hyperbolic, conformal on stable manifolds and finite-to-one on basic sets. The dynamics of non-invertible maps can be very different than the one of diffeomorphisms, as was shown for example in [4,7,12,17,19], etc. In [13] we introduced a notion of inverse topological pressureP−which can be used for estimates of the stable dimension δs(x) (i.e the Hausdorff dimension of the intersection between the local stable manifoldWsr(x) and the basic set Λ,x∈ Λ). In [10] it is shown that the usual Bowen equation is not always true in the case of non-invertible maps. By using the notion of inverse pressureP−, we showed in [13] that δs(x) ≤ts(ϵ), wherets(ϵ) is the unique zero of the functiont→P−(tφs, ϵ), for φs(y):= log|Dfs(y)|,y∈ Λ and ϵ > 0 small. In this paper we prove that if Λ is not a repellor, thents(ϵ) < 2 for any ϵ > 0 small enough. In [11] we showed that a holomorphic s-hyperbolic map on2has a global unstable set with empty interior. Here we show in a more general setting than in [11], that the Hausdorff dimension of the global unstable setWu() is strictly less than 4 under some technical derivative condition. In the non-invertible case we may have (infinitely) many unstable manifolds going through a point in Λ, and the number of preimages belonging to Λ may vary. In [17], Qian and Zhang studied the case of attractors for non-invertible maps and gave a condition for a basic set to be an attractor in terms of the pressure of the unstable potential. In our case the situation is different, since the local unstable manifolds may intersect both inside and outside Λ and they do not form a foliation like the stable manifolds. We prove here that the upper box dimension ofWsr(x) ∩ Λ is less thants(ϵ) for any pointx∈ Λ. We give then an estimate of the Hausdorff dimension ofWu() by a different technique, using the Holder continuity of the unstable manifolds with respect to their prehistories.

2013 ◽  
Vol 63 (1) ◽  
Author(s):  
Diana Putan ◽  
Diana Stan

AbstractWe study the Hausdorff dimension of the intersection between local stable manifolds and the respective basic sets of a class of hyperbolic polynomial endomorphisms on the complex projective space ℙ2. We consider the perturbation (z 2 +ɛz +bɛw 2, w 2) of (z 2, w 2) and we prove that, for b sufficiently small, it is injective on its basic set Λɛ close to Λ:= {0} × S 1. Moreover we give very precise upper and lower estimates for the Hausdorff dimension of the intersection between local stable manifolds and Λɛ, in the case of these maps.


1997 ◽  
Vol 17 (3) ◽  
pp. 739-756 ◽  
Author(s):  
YINGJIE ZHANG

We study the Hausdorff dimension of invariant sets for expanding maps and that of hyperbolic sets on unstable manifolds. Upper bounds for the Hausdorff dimension are given in terms of topological pressure, or topological entropy and Lyapunov exponents.


2008 ◽  
Vol 60 (3) ◽  
pp. 658-684 ◽  
Author(s):  
Eugen Mihailescu ◽  
Mariusz Urbański

AbstractWe study the case of an Axiom A holomorphic non-degenerate (hence non-invertible) mapf: ℙ2ℂ → ℙ2ℂ, where ℙ2ℂ stands for the complex projective space of dimension 2. Letδs(x)denote a basic set for f of unstable index 1, and x an arbitrary point of Λ; we denote byδs(x)the Hausdorff dimension of∩ Λ, whereris some fixed positive number andis the local stable manifold atxof sizer;δs(x)is calledthe stable dimension at x. Mihailescu and Urba ńnski introduced a notion of inverse topological pressure, denoted by P−, which takes into consideration preimages of points. Manning and McCluskey studied the case of hyperbolic diffeomorphisms on real surfaces and give formulas for Hausdorff dimension. Our non-invertible situation is different here since the local unstable manifolds are not uniquely determined by their base point, instead they depend in general on whole prehistories of the base points. Hence our methods are different and are based on using a sequence of inverse pressures for the iterates off, in order to give upper and lower estimates of the stable dimension. We obtain an estimate of the oscillation of the stable dimension on Λ. When each pointxfrom Λ has the same numberd′of preimages in Λ, then we show thatδs(x)is independent of x; in factδs(x)is shown to be equal in this case with the unique zero of the mapt → P(tϕs−log d′). We also prove the Lipschitz continuity of the stable vector spaces over Λ; this proof is again different than the one for diffeomorphisms (however, the unstable distribution is not always Lipschitz for conformal non-invertible maps). In the end we include the corresponding results for a real conformal setting.


Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.


2004 ◽  
Vol 06 (04) ◽  
pp. 653-679 ◽  
Author(s):  
EUGEN MIHAILESCU ◽  
MARIUSZ URBAŃSKI

In this paper, we introduce a few notions of inverse topological pressure [Formula: see text], defined in terms of backward orbits (prehistories) instead of forward orbits. This inverse topological pressure has some properties similar to the regular (forward) pressure but, in general, if the map is not a homeomorphism, they do not coincide. In fact, there are several ways to define inverse topological pressure; for instance, we show that the Bowen type definition coincides with the one using spanning sets. Then we consider the case of a holomorphic map [Formula: see text] which is Axiom A and such that its critical set does not intersect a particular basic set of saddle type Λ. We will prove that, under a technical condition, the Hausdorff dimension of the intersection between the local stable manifold and the basic set is equal to ts, i.e. [Formula: see text], for all points x belonging to Λ. Here ts represents the unique zero of the function t→P-(tϕs), with P- denoting the inverse topological pressure and [Formula: see text], y∈Λ. In general, [Formula: see text] will be estimated above by ts and below by [Formula: see text], where [Formula: see text] is the unique zero of the map t→P_(tϕs). As a corollary we obtain that, if the stable dimension is non-zero, then Λ must be a non-Jordan curve, and also, if f|Λ happens to be a homeomorphism (like in the examples from [13]), then the stable dimension cannot be zero.


2005 ◽  
Vol 2005 (3) ◽  
pp. 239-254
Author(s):  
Józef Myjak

This paper contains a review of recent results concerning typical properties of dimensions of sets and dimensions of measures. In particular, we are interested in the Hausdorff dimension, box dimension, and packing dimension of sets and in the Hausdorff dimension, box dimension, correlation dimension, concentration dimension, and local dimension of measures.


Fractals ◽  
2017 ◽  
Vol 25 (01) ◽  
pp. 1730001 ◽  
Author(s):  
JUN WANG ◽  
KUI YAO

In this paper, we mainly discuss fractal dimensions of continuous functions with unbounded variation. First, we prove that Hausdorff dimension, Packing dimension and Modified Box-counting dimension of continuous functions containing one UV point are [Formula: see text]. The above conclusion still holds for continuous functions containing finite UV points. More generally, we show the result that Hausdorff dimension of continuous functions containing countable UV points is [Formula: see text] also. Finally, Box dimension of continuous functions containing countable UV points has been proved to be [Formula: see text] when [Formula: see text] is self-similar.


2010 ◽  
Vol 31 (4) ◽  
pp. 1163-1182 ◽  
Author(s):  
VAUGHN CLIMENHAGA

AbstractWe show that Bowen’s equation, which characterizes the Hausdorff dimension of certain sets in terms of the topological pressure of an expanding conformal map, applies in greater generality than has been heretofore established. In particular, we consider an arbitrary subset Z of a compact metric space and require only that the lower Lyapunov exponents be positive on Z, together with a tempered contraction condition. Among other things, this allows us to compute the dimension spectrum for Lyapunov exponents for maps with parabolic periodic points, and to relate the Hausdorff dimension to the topological entropy for arbitrary subsets of symbolic space with the appropriate metric.


Author(s):  
HUO-JUN RUAN ◽  
JIAN-CI XIAO ◽  
BING YANG

Abstract The notion of recurrent fractal interpolation functions (RFIFs) was introduced by Barnsley et al. [‘Recurrent iterated function systems’, Constr. Approx.5 (1989), 362–378]. Roughly speaking, the graph of an RFIF is the invariant set of a recurrent iterated function system on $\mathbb {R}^2$ . We generalise the definition of RFIFs so that iterated functions in the recurrent system need not be contractive with respect to the first variable. We obtain the box dimensions of all self-affine RFIFs in this general setting.


Nonlinearity ◽  
2008 ◽  
Vol 21 (6) ◽  
pp. 1339-1347 ◽  
Author(s):  
Hui Rao ◽  
Huo-Jun Ruan ◽  
Ya-Min Yang

Sign in / Sign up

Export Citation Format

Share Document