Generalised Bohr compactification and model-theoretic connected components

2016 ◽  
Vol 163 (2) ◽  
pp. 219-249 ◽  
Author(s):  
KRZYSZTOF KRUPIŃSKI ◽  
ANAND PILLAY

AbstractFor a group G first order definable in a structure M, we continue the study of the “definable topological dynamics” of G (from [9] for example). The special case when all subsets of G are definable in the given structure M is simply the usual topological dynamics of the discrete group G; in particular, in this case, the words “externally definable” and “definable” can be removed in the results described below.Here we consider the mutual interactions of three notions or objects: a certain model-theoretic invariant G*/(G*)000M of G, which appears to be “new” in the classical discrete case and of which we give a direct description in the paper; the [externally definable] generalised Bohr compactification of G; [externally definable] strong amenability. Among other things, we essentially prove: (i) the “new” invariant G*/(G*)000M lies in between the externally definable generalised Bohr compactification and the definable Bohr compactification, and these all coincide when G is definably strongly amenable and all types in SG(M) are definable; (ii) the kernel of the surjective homomorphism from G*/(G*)000M to the definable Bohr compactification has naturally the structure of the quotient of a compact (Hausdorff) group by a dense normal subgroup; (iii) when Th(M) is NIP, then G is [externally] definably amenable iff it is externally definably strongly amenable.In the situation when all types in SG(M) are definable, one can just work with the definable (instead of externally definable) objects in the above results.

2017 ◽  
Vol 82 (3) ◽  
pp. 1080-1105 ◽  
Author(s):  
KRZYSZTOF KRUPIŃSKI

AbstractFor a group G definable in a first order structure M we develop basic topological dynamics in the category of definable G-flows. In particular, we give a description of the universal definable G-ambit and of the semigroup operation on it. We find a natural epimorphism from the Ellis group of this flow to the definable Bohr compactification of G, that is to the quotient ${G^{\rm{*}}}/G_M^{{\rm{*}}00}$ (where G* is the interpretation of G in a monster model). More generally, we obtain these results locally, i.e., in the category of Δ-definable G-flows for any fixed set Δ of formulas of an appropriate form. In particular, we define local connected components $G_{{\rm{\Delta }},M}^{{\rm{*}}00}$ and $G_{{\rm{\Delta }},M}^{{\rm{*}}000}$, and show that ${G^{\rm{*}}}/G_{{\rm{\Delta }},M}^{{\rm{*}}00}$ is the Δ-definable Bohr compactification of G. We also note that some deeper arguments from [14] can be adapted to our context, showing for example that our epimorphism from the Ellis group to the Δ-definable Bohr compactification factors naturally yielding a continuous epimorphism from the Δ-definable generalized Bohr compactification to the Δ-definable Bohr compactification of G. Finally, we propose to view certain topological-dynamic and model-theoretic invariants as Polish structures which leads to some observations and questions.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xinru Liu ◽  
Yuanpeng Zhu ◽  
Shengjun Liu

A biquartic rational interpolation spline surface over rectangular domain is constructed in this paper, which includes the classical bicubic Coons surface as a special case. Sufficient conditions for generating shape preserving interpolation splines for positive or monotonic surface data are deduced. The given numeric experiments show our method can deal with surface construction from positive or monotonic data effectively.


2012 ◽  
Vol 22 (07) ◽  
pp. 1250074 ◽  
Author(s):  
ANDREW J. DUNCAN ◽  
VLADIMIR N. REMESLENNIKOV

We define several "standard" subgroups of the automorphism group Aut (G) of a partially commutative (right-angled Artin) group and use these standard subgroups to describe decompositions of Aut (G). If C is the commutation graph of G, we show how Aut (G) decomposes in terms of the connected components of C: obtaining a particularly clear decomposition theorem in the special case where C has no isolated vertices. If C has no vertices of a type we call dominated then we give a semi-direct decomposition of Aut (G) into a subgroup of locally conjugating automorphisms by the subgroup stabilizing a certain lattice of "admissible subsets" of the vertices of C. We then characterize those graphs for which Aut (G) is a product (not necessarily semi-direct) of two such subgroups.


1988 ◽  
Vol 53 (2) ◽  
pp. 554-570 ◽  
Author(s):  
Kosta Došen ◽  
Peter Schroeder-Heister

This paper is meant to be a comment on Beth's definability theorem. In it we shall make the following points.Implicit definability as mentioned in Beth's theorem for first-order logic is a special case of a more general notion of uniqueness. If α is a nonlogical constant, Tα a set of sentences, α* an additional constant of the same syntactical category as α and Tα, a copy of Tα with α* instead of α, then for implicit definability of α in Tα one has, in the case of predicate constants, to derive α(x1,…,xn) ↔ α*(x1,…,xn) from Tα ∪ Tα*, and similarly for constants of other syntactical categories. For uniqueness one considers sets of schemata Sα and derivability from instances of Sα ∪ Sα* in the language with both α and α*, thus allowing mixing of α and α* not only in logical axioms and rules, but also in nonlogical assumptions. In the first case, but not necessarily in the second one, explicit definability follows. It is crucial for Beth's theorem that mixing of α and α* is allowed only inside logic, not outside. This topic will be treated in §1.Let the structural part of logic be understood roughly in the sense of Gentzen-style proof theory, i.e. as comprising only those rules which do not specifically involve logical constants. If we restrict mixing of α and α* to the structural part of logic which we shall specify precisely, we obtain a different notion of implicit definability for which we can demonstrate a general definability theorem, where a is not confined to the syntactical categories of nonlogical expressions of first-order logic. This definability theorem is a consequence of an equally general interpolation theorem. This topic will be treated in §§2, 3, and 4.


2021 ◽  
Vol 65 (3) ◽  
pp. 5-16
Author(s):  
Abbas Ja’afaru Badakaya ◽  

This paper concerns with the study of two pursuit differential game problems of many pursuers and many evaders on a nonempty closed convex subset of R^n. Throughout the period of the games, players must stay within the given closed convex set. Players’ laws of motion are defined by certain first order differential equations. Control functions of the pursuers and evaders are subject to geometric constraints. Pursuit is said to be completed if the geometric position of each of the evader coincides with that of a pursuer. We proved two theorems each of which is solution to a problem. Sufficient conditions for the completion of pursuit are provided in each of the theorems. Moreover, we constructed strategies of the pursuers that ensure completion of pursuit.


2021 ◽  
Author(s):  
Behnam Malakooti ◽  
Mohamed Komaki ◽  
Camelia Al-Najjar

Many studies have spotlighted significant applications of expected utility theory (EUT), cumulative prospect theory (CPT), and mean-variance in assessing risks. We illustrate that these models and their extensions are unable to predict risk behaviors accurately in out-of-sample empirical studies. EUT uses a nonlinear value (utility) function of consequences but is linear in probabilities, which has been criticized as its primary weakness. Although mean-variance is nonlinear in probabilities, it is symmetric, contradicts first-order stochastic dominance, and uses the same standard deviation for both risk aversion and risk proneness. In this paper, we explore a special case of geometric dispersion theory (GDT) that is simultaneously nonlinear in both consequences and probabilities. It complies with first-order stochastic dominance and is asymmetric to represent the mixed risk-averse and risk-prone behaviors of the decision makers. GDT is a triad model that uses expected value, risk-averse dispersion, and risk-prone dispersion. GDT uses only two parameters, z and zX; these constants remain the same regardless of the scale of risk problem. We compare GDT to several other risk dispersion models that are based on EUT and/or mean-variance, and identify verified risk paradoxes that contradict EUT, CPT, and mean-variance but are easily explainable by GDT. We demonstrate that GDT predicts out-of-sample empirical risk behaviors far more accurately than EUT, CPT, mean-variance, and other risk dispersion models. We also discuss the underlying assumptions, meanings, and perspectives of GDT and how it reflects risk relativity and risk triad. This paper covers basic GDT, which is a special case of general GDT of Malakooti [Malakooti (2020) Geometric dispersion theory of decision making under risk: Generalizing EUT, RDEU, & CPT with out-of-sample empirical studies. Working paper, Case Western Reserve University, Cleveland.].


2019 ◽  
Vol 27 (03) ◽  
pp. 1950007
Author(s):  
J. R. Wu ◽  
T. F. Gao ◽  
E. C. Shang

In this paper, an analytic range-independent reverberation model based on the first-order perturbation theory is extended to range-dependent waveguide. This model considers the effect of bottom composite roughness: small-scale bottom rough surface provides dominating energy for reverberation, whereas large-scale roughness has the effect of forward and back propagation. For slowly varying bottom and short signal pulse, analytic small-scale roughness backscattering theory is adapted in range-dependent waveguides. A parabolic equation is used to calculate Green functions in range-dependent waveguides, and the orthogonal property of local normal modes is employed to estimate the modal spectrum of PE field. Synthetic tests demonstrate that the proposed reverberation model works well, and it can also predict the reverberation of range-independent waveguide as a special case.


2007 ◽  
Vol 2007 ◽  
pp. 1-8
Author(s):  
Mehmet Sahin ◽  
Manaf Dzh. Manafov

We study some spectral problems for a second-order differential operator with periodic potential. Notice that the given potential is a sum of zero- and first-order generalized functions. It is shown that the spectrum of the investigated operator consists of infinite number of gaps whose length limit unlike the classic case tends to nonzero constant in some place and to infinity in other place.


Sign in / Sign up

Export Citation Format

Share Document