Singularities of line congruences

2003 ◽  
Vol 133 (6) ◽  
pp. 1341-1359 ◽  
Author(s):  
Shyuichi Izumiya ◽  
Kentaro Saji ◽  
Nobuko Takeuchi

A line congruence is a two-parameter family of lines in R3. In this paper we study singularities of line congruences. We show that generic singularities of general line congruences are the same as those of stable mappings between three-dimensional manifolds. Moreover, we also study singularities of normal congruences and equiaffine normal congruences from the viewpoint of the theory of Lagrangian singularities.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Bobev ◽  
Friðrik Freyr Gautason ◽  
Jesse van Muiden

Abstract We employ a non-compact gauging of four-dimensional maximal supergravity to construct a two-parameter family of AdS4 J-fold solutions preserving $$ \mathcal{N} $$ N = 2 supersymmetry. All solutions preserve $$ \mathfrak{u} $$ u (1) × $$ \mathfrak{u} $$ u (1) global symmetry and in special limits we recover the previously known $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{u} $$ u (1) invariant $$ \mathcal{N} $$ N = 2 and $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{su} $$ su (2) invariant $$ \mathcal{N} $$ N = 4 J-fold solutions. This family of AdS4 backgrounds can be uplifted to type IIB string theory and is holographically dual to the conformal manifold of a class of three-dimensional S-fold SCFTs obtained from the $$ \mathcal{N} $$ N = 4 T [U(N)] theory of Gaiotto-Witten. We find the spectrum of supergravity excitations of the AdS4 solutions and use it to study how the operator spectrum of the three-dimensional SCFT depends on the exactly marginal couplings.


2013 ◽  
Vol 725 ◽  
pp. 446-461 ◽  
Author(s):  
Julian F. Scott

AbstractThe three-dimensional analogue of Moffatt eddies is derived for a corner formed by the intersection of three orthogonal planes. The complex exponents of the first few modes are determined and the flows resulting from the primary modes (those which decay least rapidly as the apex is approached and, hence, should dominate the near-apex flow) examined in detail. There are two independent primary modes, one symmetric, the other antisymmetric, with respect to reflection in one of the symmetry planes of the cone. Any linear combination of these modes yields a possible primary flow. Thus, there is not one, but a two-parameter family of such flows. The particle-trajectory equations are integrated numerically to determine the streamlines of primary flows. Three special cases in which the flow is antisymmetric under reflection lead to closed streamlines. However, for all other cases, the streamlines are not closed and quasi-periodic limiting trajectories are approached when the trajectory equations are integrated either forwards or backwards in time. A generic streamline follows the backward-time trajectory in from infinity, undergoes a transient phase in which particle motion is no longer quasi-periodic, before being thrown back out to infinity along the forward-time trajectory.


Author(s):  
M. Kretov

The complex (three-parameter family) of elliptic cylinders is investigated in the three-dimensional affine space, in which the characteristic multiplicity of the forming element consists of three coordinate axes. The focal variety of the forming element of the considered variety is geometrically characterized. Geometric properties of the complex under study were obtained. It is shown that the studied manifold exists and is determined by a completely integrable system of differential equations. It is proved that the focal variety of the forming element of the complex consists of four geometrically characterized points. The center of the ray of the straight-line congruence of the axes of the cylinder, the indicatrix of the second coordinate vector, the second coordinate line and one of the coordinate planes are fixed. The indicatrix of the first coordinate vector describes a one-parameter family of lines with tangents parallel to the second coordinate vector. The end of the first coordinate vector describes a one-parameter family of lines with tangents parallel to the third coordinate vector. The indicatrix of the third coordinate vector and its end describe congruences of planes parallel to the first coordinate plane. The points of the first coordinate line and the first coordinate plane describe one-parameter families of planes parallel to the coordinate plane indicated above.


1992 ◽  
Vol 07 (20) ◽  
pp. 4937-4948
Author(s):  
ROBERT LINK

The phase two-form of Berry in the neighborhood of a degeneracy of the Fock vacuum of a semisimple, nonabelian, second-quantized, relativistic fermion-background gauge field Hamiltonian is shown to be that of the Dirac magnetic monopole—thus extending a result of Berry to field theory. The Dirac Hamiltonian for an SU(2) fermion on the two-sphere is solved in a particular two-parameter family of background instanton gauge potentials as an explicit illustrative example.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nadav Drukker ◽  
Marcia Tenser ◽  
Diego Trancanelli

Abstract We present new circular Wilson loops in three-dimensional $$ \mathcal{N} $$ N = 4 quiver Chern-Simons-matter theory on S3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Including then adjacent nodes, the coupling to the bifundamental matter fields allows to enlarge this family and to construct loop operators based on superconnections. We discuss their classification, which depends on both discrete data and continuous parameters subject to an identification. The resulting moduli spaces are conical manifolds, similar to the conifold of the 1/6 BPS loops of the ABJ(M) theory.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Camille Eloy ◽  
Gabriel Larios ◽  
Henning Samtleben

Abstract We study compactifications on AdS3×S3 and deformations thereof. We exploit the triality symmetry of the underlying duality group SO(4,4) of three-dimensional supergravity in order to construct and relate new consistent truncations. For non-chiral D = 6, $$ \mathcal{N} $$ N 6d = (1, 1) supergravity, we find two different consistent truncations to three-dimensional supergravity, retaining different subsets of Kaluza-Klein modes, thereby offering access to different subsectors of the full nonlinear dynamics. As an application, we construct a two-parameter family of AdS3 × M3 backgrounds on squashed spheres preserving U(1)2 isometries. For generic value of the parameters, these solutions break all supersymmetries, yet they remain perturbatively stable within a non-vanishing region in parameter space. They also contain a one-parameter family of $$ \mathcal{N} $$ N = (0, 4) supersymmetric AdS3 × M3 backgrounds on squashed spheres with U(2) isometries. Using techniques from exceptional field theory, we determine the full Kaluza-Klein spectrum around these backgrounds.


1986 ◽  
Vol 10 (5) ◽  
pp. 415-423 ◽  
Author(s):  
J.R. Pounder ◽  
Thomas D. Rogers

Perception ◽  
1993 ◽  
Vol 22 (12) ◽  
pp. 1441-1465 ◽  
Author(s):  
Jeffrey C Liter ◽  
Myron L Braunstein ◽  
Donald D Hoffman

Five experiments were conducted to examine constraints used to interpret structure-from-motion displays. Theoretically, two orthographic views of four or more points in rigid motion yield a one-parameter family of rigid three-dimensional (3-D) interpretations. Additional views yield a unique rigid interpretation. Subjects viewed two-view and thirty-view displays of five-point objects in apparent motion. The subjects selected the best 3-D interpretation from a set of 89 compatible alternatives (experiments 1–3) or judged depth directly (experiment 4). In both cases the judged depth increased when relative image motion increased, even when the increased motion was due to increased simulation rotation. Subjects also judged rotation to be greater when either simulated depth or simulated rotation increased (experiment 4). The results are consistent with a heuristic analysis in which perceived depth is determined by relative motion.


Sign in / Sign up

Export Citation Format

Share Document