Commuting linear differential expressions

Author(s):  
M. Giertz ◽  
M. K. Kwong ◽  
A. Zettl

SynopsisWe consider the question: When do two ordinary linear differential expressions commute? It turns out that the set of all expressions which commute with a given one form a commutative ring. Here we study the algebraic structure of these rings. As an application a complete characterization of normal differential expressions is obtained.

2007 ◽  
Vol 06 (04) ◽  
pp. 671-685 ◽  
Author(s):  
K. VARADARAJAN

We give a complete characterization of the class of commutative rings R possessing the property that Spec(R) is weakly 0-dimensional. They turn out to be the same as strongly π-regular rings. We considerably strengthen the results of K. Samei [13] tying up cleanness of R with the zero dimensionality of Max(R) in the Zariski topology. In the class of rings C(X), W. Wm Mc Govern [6] has characterized potent rings as the ones with X admitting a clopen π-base. We prove the analogous result for any commutative ring in terms of the Zariski topology on Max(R). Mc Govern also introduced the concept of an almost clean ring and proved that C(X) is almost clean if and only if it is clean. We prove a similar result for all Gelfand rings R with J(R) = 0.


Author(s):  
Najat Muthana ◽  
Abdellah Mamouni

Let [Formula: see text] be a finite undirected graph without loops or multiple edges. A non-empty set of vertices [Formula: see text] is called defensive alliance if every vertex in [Formula: see text] have at least one more neighbors inside of [Formula: see text] than it has outside of [Formula: see text]. A non-empty set of vertices [Formula: see text] is called a dominating set if every vertex not in [Formula: see text] is adjacent to at least one member of [Formula: see text]. A defensive alliance dominating set is called global. The global defensive alliance number [Formula: see text] is defined as the minimum cardinality among all global defensive alliances. In this paper, we initiate the study of the global defensive alliance number of zero-divisor graphs [Formula: see text] with [Formula: see text] is a finite commutative ring. Hence, we calculate [Formula: see text] for some usual kind of rings. We finish by a complete characterization of rings with [Formula: see text].


1992 ◽  
Vol 16 (3-4) ◽  
pp. 263-273
Author(s):  
Jiří Novotný ◽  
Miroslav Novotný

The concept of the relation of dependence between sets of attributes of an information system is studied in a more abstract setting – in the algebraic structure called dependence space. Complete characterization of dependence relation in a dependence space is presented.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Author(s):  
G. Meneghesso ◽  
E. Zanoni ◽  
P. Colombo ◽  
M. Brambilla ◽  
R. Annunziata ◽  
...  

Abstract In this work, we present new results concerning electrostatic discharge (ESD) robustness of 0.6 μm CMOS structures. Devices have been tested according to both HBM and socketed CDM (sCDM) ESD test procedures. Test structures have been submitted to a complete characterization consisting in: 1) measurement of the tum-on time of the protection structures submitted to pulses with very fast rise times; 2) ESD stress test with the HBM and sCDM models; 3) failure analysis based on emission microscopy (EMMI) and Scanning Electron Microscopy (SEM).


2019 ◽  
Vol 125 (1) ◽  
pp. 10008 ◽  
Author(s):  
Bat-el Friedman ◽  
Atanu Rajak ◽  
Emanuele G. Dalla Torre

2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Author(s):  
Vladimir Shikhman

AbstractWe study mathematical programs with switching constraints (for short, MPSC) from the topological perspective. Two basic theorems from Morse theory are proved. Outside the W-stationary point set, continuous deformation of lower level sets can be performed. However, when passing a W-stationary level, the topology of the lower level set changes via the attachment of a w-dimensional cell. The dimension w equals the W-index of the nondegenerate W-stationary point. The W-index depends on both the number of negative eigenvalues of the restricted Lagrangian’s Hessian and the number of bi-active switching constraints. As a consequence, we show the mountain pass theorem for MPSC. Additionally, we address the question if the assumption on the nondegeneracy of W-stationary points is too restrictive in the context of MPSC. It turns out that all W-stationary points are generically nondegenerate. Besides, we examine the gap between nondegeneracy and strong stability of W-stationary points. A complete characterization of strong stability for W-stationary points by means of first and second order information of the MPSC defining functions under linear independence constraint qualification is provided. In particular, no bi-active Lagrange multipliers of a strongly stable W-stationary point can vanish.


Sign in / Sign up

Export Citation Format

Share Document