Light Aircraft Navigation

1951 ◽  
Vol 4 (02) ◽  
pp. 167-177
Author(s):  
Michael Townsend

This paper is an appreciation of the navigational problems encountered during a flight round the world in 1948, in a single-engined light aircraft. The route chosen (Fig. 2) covered nearly every type of flying weather in the world, from the perfect conditions of the Mediterranean in the summer to the severe climate of the Aleutian islands; navigation tests were provided by the overwater flights across the South China Sea (Hong Kong—Okinawa = 900 miles), the North Pacific (Chitose—Shemya = 1730 miles) and the North Atlantic.

Author(s):  
Helmut Lehnert ◽  
Robert P. Stone ◽  
David Drumm

A new species of Geodia is described from the North Pacific, collected in the summer of 2012 in the western Aleutian Islands. Geodia starki sp. nov. differs from all known species of Geodia by the possession of two categories of sterrasters and exceptionally large megascleres. The new species is compared with congeners of the North Pacific Ocean, Bering Sea, Arctic and the North Atlantic Oceans.


Zootaxa ◽  
2011 ◽  
Vol 2963 (1) ◽  
pp. 48 ◽  
Author(s):  
R. N. CLARK ◽  
STEPHEN C. JEWETT

A new species of goniasterid sea star, Hippasteria aleutica sp. nov. is described from the Aleutian Islands, and compared to H. phrygiana (Parelius, 1768) from the North Atlantic-Arctic, as well as its congeners from the North Pacific. Distribution is discussed and a key to the described species of Hippasteria in Alaskan waters is presented.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2012 ◽  
Vol 3 (2) ◽  
pp. 1347-1389
Author(s):  
R. Séférian ◽  
L. Bopp ◽  
D. Swingedouw ◽  
J. Servonnat

Abstract. Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear if detected changes over the recent time period can really be attributed to anthropogenic climate change or to natural climate variability (internal plus naturally forced variability). One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000-yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20-yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterized by decadal to multi-decadal modes of variability (10 to 50 yr) that account for 30–40% of the interannual regional variance. But these modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.


Sign in / Sign up

Export Citation Format

Share Document