Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters

2009 ◽  
Vol 62 (3) ◽  
pp. 477-491 ◽  
Author(s):  
D. C. Lo ◽  
Dong-Taur Su ◽  
Jan-Ming Chen

It is well known that vessels operating in the vicinity of a lateral bank experience a significant yaw moment and sway force. This bank effect has a major impact on the manoeuvring properties of the vessel and must therefore be properly understood to ensure the safe passage of the vessel through the restricted waterway. Accordingly, this study performs a series of simulations using commercial FLOW-3D® computational fluid dynamics (CFD) software and the KRISO 3600 TEU container ship model to examine the effects of the vessel speed and distance to bank on the magnitude and time-based variation of the yaw angle and sway force. The results show that for a given vessel speed, the yaw angle and sway force increase as the distance to bank reduces, while for a given distance between the ship and the bank, the yaw angle and sway force increase with an increasing vessel speed. In addition, it is shown that even when a vessel advances at a very low speed, it experiences a significant bank effect when operating in close vicinity to the bank. Overall, the results presented in this study confirm the feasibility of the CFD modelling approach as a means of obtaining detailed insights into the bank effect without the need for time-consuming and expensive ship trials.

2002 ◽  
Author(s):  
Steven P. O’Halloran ◽  
Mohammad H. Hosni ◽  
B. Terry Beck ◽  
Thomas P. Gielda

Computational fluid dynamics (CFD) simulations were used to predict three-dimensional flow within a one-tenth-scale room. The dimensions of the scaled room were 732 × 488 × 274 mm (28.8 × 19.2 × 10.8 in.) and symmetry was utilized so that only half of the room was modeled. Corresponding measurements were made under isothermal conditions and water was used as the working fluid instead of air. The commercially available software Fluent was used to perform the simulations. Two turbulence models were used: the renormalization group (RNG) k-ε model and the Reynolds-stress model. The CFD setup is presented in this paper, along with the velocity and turbulent kinetic energy results. The simulation results are compared to previously obtained three-dimensional particle image velocimetry (PIV) measurements made within the same scaled room under similar conditions.


2021 ◽  
Vol 26 (1) ◽  
pp. 63-87
Author(s):  
Ali Hussein Khan ◽  
◽  
Siti Sarah Herman ◽  
Mohamad Fakri Zaky Jaafar ◽  
◽  
...  

The gradient of height in buildings is the most common way to prepare a comfortable environment and to increase wind forces around the buildings. This study assessed various design choices that enable architectural buildings to have different heights using computational fluid dynamics (CFD) simulation to analyse wind conditions. Nonetheless, wind effects may create uncomfortable zones around high buildings and may be hazardous for pedestrians in open spaces. As such, this study looked into pedestrian level wind (PLW) to enhance the wind environment of buildings in Iraqi climate. Wind characteristics may create a range of disturbance levels that affect pedestrian areas. Iraqi residential buildings were taken as case study to quantitatively analyse the outdoor buildings at PLW, so as to generate some ideas and solutions between CFD simulation analysis and architectural design to yield an optimal model.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Sign in / Sign up

Export Citation Format

Share Document