scholarly journals A New Avionics-Based GNSS Integrity Augmentation System: Part 1 – Fundamentals

2013 ◽  
Vol 66 (3) ◽  
pp. 363-384 ◽  
Author(s):  
Roberto Sabatini ◽  
Terry Moore ◽  
Chris Hill

The aviation community has very stringent navigation integrity requirements that apply to a variety of manned and Unmanned Aerial Vehicle (UAV) operational tasks. This paper presents the results of the research activities carried out by the Italian Air Force Flight Test Centre (CSV-RSV) in collaboration with the Nottingham Geospatial Institute (NGI) and Cranfield University (CU) in the area of Avionics-Based Integrity Augmentation (ABIA) for mission- and safety-critical Global Navigation Satellite System (GNSS) applications. Based on these activities, suitable models were developed to describe the main causes of GNSS signal outage and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system delivers integrity caution (predictive) and warning (reactive) flags, as well as steering information to the pilot and electronic commands to the aircraft/UAV flight control system. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. This paper presents the key ABIA concepts, architecture and mathematical models. A successive paper will address the ABIA integrity thresholds criteria and detailed results of a TORNADO simulation case-study.

2013 ◽  
Vol 66 (4) ◽  
pp. 501-522 ◽  
Author(s):  
Roberto Sabatini ◽  
Terry Moore ◽  
Chris Hill

This paper presents the second part of the research activities carried out to develop a novel Global Navigation Satellite System (GNSS) Avionics-Based Integrity Augmentation (ABIA) system for manned and Unmanned Aerial Vehicle (UAV) applications. The ABIA system's architecture was developed to allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In more detail, our novel ABIA system addresses all four cornerstones of GNSS integrity augmentation in mission- and safety-critical avionics applications: prediction (caution flags), avoidance (optimal flight path guidance), reaction (warning flags) and correction (recovery flight path guidance). Part 1 (Sabatini et al., 2012) presented the ABIA concept, architecture and key mathematical models used to describe GNSS integrity issues in aircraft applications. This second part addresses the ABIA caution and warning integrity flags criteria and presents the results of a simulation case study performed on the TORNADO Interdiction and Strike (IDS) aircraft.


2021 ◽  
pp. 1-13
Author(s):  
Jonghyuk Kim ◽  
Jose Guivant ◽  
Martin L. Sollie ◽  
Torleiv H. Bryne ◽  
Tor Arne Johansen

Abstract This paper addresses the fusion of the pseudorange/pseudorange rate observations from the global navigation satellite system and the inertial–visual simultaneous localisation and mapping (SLAM) to achieve reliable navigation of unmanned aerial vehicles. This work extends the previous work on a simulation-based study [Kim et al. (2017). Compressed fusion of GNSS and inertial navigation with simultaneous localisation and mapping. IEEE Aerospace and Electronic Systems Magazine, 32(8), 22–36] to a real-flight dataset collected from a fixed-wing unmanned aerial vehicle platform. The dataset consists of measurements from visual landmarks, an inertial measurement unit, and pseudorange and pseudorange rates. We propose a novel all-source navigation filter, termed a compressed pseudo-SLAM, which can seamlessly integrate all available information in a computationally efficient way. In this framework, a local map is dynamically defined around the vehicle, updating the vehicle and local landmark states within the region. A global map includes the rest of the landmarks and is updated at a much lower rate by accumulating (or compressing) the local-to-global correlation information within the filter. It will show that the horizontal navigation error is effectively constrained with one satellite vehicle and one landmark observation. The computational cost will be analysed, demonstrating the efficiency of the method.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2810
Author(s):  
Krzysztof Naus ◽  
Piotr Szymak ◽  
Paweł Piskur ◽  
Maciej Niedziela ◽  
Aleksander Nowak

Undoubtedly, Low-Altitude Unmanned Aerial Vehicles (UAVs) are becoming more common in marine applications. Equipped with a Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) receiver for highly accurate positioning, they perform camera and Light Detection and Ranging (LiDAR) measurements. Unfortunately, these measurements may still be subject to large errors-mainly due to the inaccuracy of measurement of the optical axis of the camera or LiDAR sensor. Usually, UAVs use a small and light Inertial Navigation System (INS) with an angle measurement error of up to 0.5∘ (RMSE). The methodology for spatial orientation angle correction presented in the article allows the reduction of this error even to the level of 0.01∘ (RMSE). It can be successfully used in coastal and port waters. To determine the corrections, only the Electronic Navigational Chart (ENC) and an image of the coastline are needed.


2013 ◽  
Vol 805-806 ◽  
pp. 851-854
Author(s):  
Zhi Ge Jia ◽  
Zhao Sheng Nie ◽  
Wei Wang ◽  
Xiao Guan ◽  
Di Jin Wang

This work describes the field testing process of Global Navigation Satellite System (GNSS) receiver under 220KV, 500KV UHV transmission line and standard calibration field. Analysis for GNSS data results shows that the radio interference generated by EHV transmission lines have no effect on GNSS receiver internal noise levels and valid GNSS observation rate. Within 50 meters of the EHV transmission lines, the multi-path effects (mp1 and mp2 value) significantly exceeded the normal range and becomes larger with the increase of the voltage .outside 50 meters of the EHV transmission line, the multi-path effects have almost no effect on the high-precision GNSS observations.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 280
Author(s):  
Farzan Farhangian ◽  
Hamza Benzerrouk ◽  
Rene Landry

With the emergence of numerous low Earth orbit (LEO) satellite constellations such as Iridium-Next, Globalstar, Orbcomm, Starlink, and OneWeb, the idea of considering their downlink signals as a source of pseudorange and pseudorange rate measurements has become incredibly attractive to the community. LEO satellites could be a reliable alternative for environments or situations in which the global navigation satellite system (GNSS) is blocked or inaccessible. In this article, we present a novel in-flight alignment method for a strapdown inertial navigation system (SINS) using Doppler shift measurements obtained from single or multi-constellation LEO satellites and a rotation technique applied on the inertial measurement unit (IMU). Firstly, a regular Doppler positioning algorithm based on the extended Kalman filter (EKF) calculates states of the receiver. This system is considered as a slave block. In parallel, a master INS estimates the position, velocity, and attitude of the system. Secondly, the linearized state space model of the INS errors is formulated. The alignment model accounts for obtaining the errors of the INS by a Kalman filter. The measurements of this system are the difference in the outputs from the master and slave systems. Thirdly, as the observability rank of the system is not sufficient for estimating all the parameters, a discrete dual-axis IMU rotation sequence was simulated. By increasing the observability rank of the system, all the states were estimated. Two experiments were performed with different overhead satellites and numbers of constellations: one for a ground vehicle and another for a small flight vehicle. Finally, the results showed a significant improvement compared to stand-alone INS and the regular Doppler positioning method. The error of the ground test reached around 26 m. This error for the flight test was demonstrated in different time intervals from the starting point of the trajectory. The proposed method showed a 180% accuracy improvement compared to the Doppler positioning method for up to 4.5 min after blocking the GNSS.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


Author(s):  
Kun Chen ◽  
Zhiwei Shi ◽  
Jiachen Zhu ◽  
Haiyang Wang ◽  
Junquan Fu

To explore the control efficiency of circulation flow control technology, a circulation control actuator with an independent gas source has been designed and applied in roll attitude control of a small unmanned aerial vehicle. The circulation control devices are arranged at the two ends of the wing on an unmanned aerial vehicle scale model, the changes in aerodynamic force and aerodynamic moment caused by turning on the actuator are measured in a wind tunnel, and the flow field characteristics are analysed using particle image velocimetry technology. The flight control effect of the roll attitude is verified via a flight test. Experimental and flight test results show that the control of roll attitude can be achieved by turning on the circulation control actuator on one side, and the maximum efficiency that the circulation control generates is equivalent to 8° aileron deflection with production of a favorable yaw moment to achieve a coordinated turn. The circulation control actuator can increase lift and reduce drag when opened on both sides simultaneously. The maximum lift-to-drag ratio of the UAV increased from 5 to 9, and this approach can also suppress flow separation and delay stall at high angles of attack. The aileron or trailing edge flaps can be replaced with circulation control actuators, and the circulation control technology can also be applied to aerodynamic performance improvement and flight control in other types of aircraft.


2020 ◽  
Vol 12 (3) ◽  
pp. 411 ◽  
Author(s):  
Sangeetha Shankar ◽  
Michael Roth ◽  
Lucas Andreas Schubert ◽  
Judith Anne Verstegen

Up-to-date geodatasets on railway infrastructure are valuable resources for the field of transportation. This paper investigates three methods for mapping the center lines of railway tracks using heterogeneous sensor data: (i) conditional selection of satellite navigation (GNSS) data, (ii) a combination of inertial measurements (IMU data) and GNSS data in a Kalman filtering and smoothing framework and (iii) extraction of center lines from laser scanner data. Several combinations of the methods are compared with a focus on mapping in tree-covered areas. The center lines of the railway tracks are extracted by applying these methods to a test dataset collected by a road-rail vehicle. The guard rails in the test area were also extracted during the center line detection process. The combination of methods (i) and (ii) gave the best result for the track on which the measurement vehicle had moved, mapping almost 100% of the track. The combination of methods (ii) and (iii) and the combination of all three methods gave the best result for the other parallel tracks, mapping between 25% and 80%. The mean perpendicular distance of the mapped center lines from the reference data was 1.49 meters.


2017 ◽  
Vol 37 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Robert A Hewitt ◽  
Evangelos Boukas ◽  
Martin Azkarate ◽  
Marco Pagnamenta ◽  
Joshua A Marshall ◽  
...  

This paper describes a dataset collected along a 1 km section of beach near Katwijk, The Netherlands, which was populated with a collection of artificial rocks of varying sizes to emulate known rock size densities at current and potential Mars landing sites. First, a fixed-wing unmanned aerial vehicle collected georeferenced images of the entire area. Then, the beach was traversed by a rocker-bogie-style rover equipped with a suite of sensors that are envisioned for use in future planetary rover missions. These sensors, configured so as to emulate the ExoMars rover, include stereo cameras, and time-of-flight and scanning light-detection-and-ranging sensors. This dataset will be of interest to researchers developing localization and mapping algorithms for vehicles traveling over natural and unstructured terrain in environments that do not have access to the global navigation satellite system, and where only previously taken satellite or aerial imagery is available.


Sign in / Sign up

Export Citation Format

Share Document