scholarly journals Optical Image Generation and High-precision Line-of-Sight Extraction for Mars Approach Navigation

2018 ◽  
Vol 72 (1) ◽  
pp. 229-252 ◽  
Author(s):  
Xiuqiang Jiang ◽  
Shuang Li ◽  
Long Gu ◽  
Jun Sun ◽  
Dongdong Xiao

A high-precision line-of-sight extraction technique is essential for autonomous optical navigation during the Mars approach phase. To support future Mars exploration missions, an optical image simulation system is a necessary ground verification facility for Mars image generation and line-of-sight extraction algorithm tests. In this paper, an optical image generation procedure is first developed according to projection relationships, reference flight profiles and camera parameters. Next, a hybrid image processing and subpixel-level line-of-sight extraction algorithm is proposed through modification of moment-based sub-pixel edge detection and improvement of direct least-square fitting approaches. Finally, an optical image simulation system is established, and the experimental results show that the proposed procedure can effectively simulate the optical image in the field-of-view of a Mars spacecraft, and the hybrid extraction algorithm can obtain high-precision Mars centroid information.

2018 ◽  
Vol 72 (1) ◽  
pp. 253-254 ◽  
Author(s):  
Xiuqiang Jiang ◽  
Shuang Li ◽  
Long Gu ◽  
Jun Sun ◽  
Dongdong Xiao

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 920
Author(s):  
Neha Chaudhary ◽  
Othman Isam Younus ◽  
Luis Nero Alves ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvanovec ◽  
...  

The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F.


Author(s):  
Zhaolun Li ◽  
Rushi Lan ◽  
Zhuo Chen ◽  
Xiaonan Luo ◽  
Ji Li ◽  
...  

2022 ◽  
Vol 163 (2) ◽  
pp. 63
Author(s):  
Taro Matsuo ◽  
Thomas P. Greene ◽  
Mahdi Qezlou ◽  
Simeon Bird ◽  
Kiyotomo Ichiki ◽  
...  

Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s−1, and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences.


2018 ◽  
Vol 237 ◽  
pp. 03014
Author(s):  
Xue Lian ◽  
Nan Hua ◽  
Liu Jiaqi ◽  
Liu Xin ◽  
Meng Gang

The large-sized space environmental simulation test facility is mainly used for providing thermal radiation environment in high-vacuum, cold and dark space for satellites, spacecraft, lunar spacecraft to carry out whole satellite thermal vacuum test and for large equipment like antenna to carry out tests in TV conditions. Monitoring the spacecraft’s surface optical image or temperature is a main task in space environment simulation test. In previous tests, optical image test mainly took place in a fixed position, so the measuring location and angle are limited. This paper focuses on large spherical space environmental simulation test facility, and designs a large arc-shape high-precision walking device in a space environment simulation test device. It introduces key technology in detail like structure design, thermal design, processes and manufacturing, etc. The test results show that this device can work steadily and reliably under simulation space environments, and the precision exceeds 0.5°.


2018 ◽  
Vol 1060 ◽  
pp. 012069
Author(s):  
Yan Ouyang ◽  
Tingxin Xu ◽  
Xiaobin Huang ◽  
Li Lu ◽  
ShuWen Wang ◽  
...  

2020 ◽  
Vol 32 (3) ◽  
pp. 035021
Author(s):  
Huacheng Lou ◽  
Min Lu ◽  
Haihua Cui ◽  
Tao Jiang ◽  
Wei Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document