Coffee monoculture trends in tropical agroforested landscapes of Western Ghats (India)

2016 ◽  
Vol 44 (2) ◽  
pp. 183-190 ◽  
Author(s):  
CÉDRIC GAUCHEREL ◽  
JULIE ALET ◽  
CLAUDE GARCIA

SUMMARYAgainst the backdrop of the competing demands of agricultural productivity and biodiversity conservation, understanding land-use changes is critical. We studied the past, current and future landscape–dynamic scenarios for coffee and rice-coupled crops at a village scale in the Western Ghats (southern India) by integrating three levels of organization (patch, farm and soils). The village structures and dynamics from 1950 to 2010 were modelled with the Dynamic Patch Landscape (DYPAL) modelling platform and analysed with Comparison Map Profile (CMP) spatial analysis in order to assess environmental trends. Our model, combined with mathematical formalizations and multiscale analyses, was also used to project future land-use sustainability. Our findings highlight significant environmental issues affecting the Western Ghats biodiversity hotspot, which is also subject to increasing and differential demands for other crops that are dependent on farm production systems. Intensive coffee cultivation, with conversion of the forest cover into Grevillea robusta monoculture and ongoing paddy abandonment, have had a strong impact on the region's landscape (+30% G. robusta) and biodiversity (from –3% to –13% in the already-reduced forest cover).

Author(s):  
S.. Bharath ◽  
K.S. Rajan ◽  
T.V. Ramachandra

The land use changes in forested landscape are highly complex and dynamic, affected by the natural, socio-economic, cultural, political and other factors. The remote sensing (RS) and geographical information system (GIS) techniques coupled with multi-criteria evaluation functions such as Markov-cellular automata (CA–Markov) model helps in analysing intensity, extent and future forecasting of human activities affecting the terrestrial biosphere. Karwar taluk of Central Western Ghats in Karnataka state, India has seen rapid transitions in its forest cover due to various anthropogenic activities, primarily driven by major industrial activities. A study based on Landsat and IRS derived data along with CA–Markov method has helped in characterizing the patterns and trends of land use changes over a period of 2004–2013, expected transitions was predicted for a set of scenarios through 2013-2022. The analysis reveals the loss of pristine forest cover from 75.51% to 67.36% (1973 to 2013) and increase in agriculture land as well as built-up area of 8.65% (2013), causing impact on local flora and fauna. The other factors driving these changes are the aggregated level of demand for land, local and regional effects of land use activities such as deforestation, improper practices in expansion of agriculture and infrastructure development, deteriorating natural resources availability. The spatio temporal models helped in visualizing on-going changes apart from prediction of likely changes. The CA-Markov based analysis provides us insights into the localized changes impacting these regions and can be useful in developing appropriate mitigation management approaches based on the modelled future impacts. This necessitates immediate measures for minimizing the future impacts.


2020 ◽  
Vol 12 (3) ◽  
pp. 406 ◽  
Author(s):  
Michael J. Hill ◽  
Juan P. Guerschman

Vegetation Fractional Cover (VFC) is an important global indicator of land cover change, land use practice and landscape, and ecosystem function. In this study, we present the Global Vegetation Fractional Cover Product (GVFCP) and explore the levels and trends in VFC across World Grassland Type (WGT) Ecoregions considering variation associated with Global Livestock Production Systems (GLPS). Long-term average levels and trends in fractional cover of photosynthetic vegetation (FPV), non-photosynthetic vegetation (FNPV), and bare soil (FBS) are mapped, and variation among GLPS types within WGT Divisions and Ecoregions is explored. Analysis also focused on the savanna-woodland WGT Formations. Many WGT Divisions showed wide variation in long-term average VFC and trends in VFC across GLPS types. Results showed large areas of many ecoregions experiencing significant positive and negative trends in VFC. East Africa, Patagonia, and the Mitchell Grasslands of Australia exhibited large areas of negative trends in FNPV and positive trends FBS. These trends may reflect interactions between extended drought, heavy livestock utilization, expanded agriculture, and other land use changes. Compared to previous studies, explicit measurement of FNPV revealed interesting additional information about vegetation cover and trends in many ecoregions. The Australian and Global products are available via the GEOGLAM RAPP (Group on Earth Observations Global Agricultural Monitoring Rangeland and Pasture Productivity) website, and the scientific community is encouraged to utilize the data and contribute to improved validation.


2016 ◽  
Vol 4 (3) ◽  
pp. 35
Author(s):  
Agustin Arisandi Mustika ◽  
Samsul Bakri ◽  
Dyah Wulan S. R. Wardani

The conversion of forest area into non-forest area generally can causing the ecology and micro climate change especially rainfall.   The impact of these changes in other side can increasing the probability in occurrence of vector-born disease such as Aedes aegypti mosquito couse of Dengue Hemorrhagic Fever (DHF).   Besides of environmental factors, poverty level, rainfall, and housing conditions the suspected also affect the incidence of dengue.  This research aimed to determine of changes in forest cover and land, poverty level, and housing conditions as well as the impact to the incidence of dengue fever in Lampung. Data collected included primary data of land use changes of Lampung Province and the secondary  data  such  as  the  data  of  precipitation  rapid,  poverty  level,  healthy  house proportion and Incidence Rate of dengue.  The dynamic of changes in forest cover and landper distric/city identified through by Landsat image interpretation 5, 7 and 8  in 2002, 2009 and 2014.   While the impact on DHF analyzed using multiple linear models.   The results showed that there was a significant relationship between the changes of the people forest cover   -1,2634   (p=0,001),   intensive   agricultural   0,5315   (p=0,016),   the   number   of precipitation rapid 0,06869 (p=0,087) and the poverty level -0,2213 (p=0,038) and urbanism region in the towns and villages 28,75 (p=0,010) toward the incidence of dengue in Lampung from the year 2003 to 2014.  Based on the reseacrh result that the goverment should be able to increase the percentage of forest area cause able to decrease the incidence DHF. Keyword: forest conversion, incidence DHF, land use changes


2021 ◽  
Vol 13 (13) ◽  
pp. 20033-20055
Author(s):  
Naveen Babu Kanda ◽  
Kurian Ayushi ◽  
Vincy K. Wilson ◽  
Narayanan Ayyappan ◽  
Narayanaswamy Parthasarathy

Documenting the biodiversity of protected areas and reserve forests is important to researchers, academicians and forest departments in their efforts to establish policies to protect regional biodiversity. Shettihalli Wildlife Sanctuary (SWS) is an important protected area located in the central Western Ghats of Karnataka state known for its diverse flora and fauna with distinct ecological features. For the last four decades the sanctuary has witnessed the loss of forest cover, yet the vegetation in few locations is relatively undisturbed. The current inventory was undertaken during 2019–2020 to provide a checklist of woody species from SWS under-researched earlier. The list comprises 269 species of trees, lianas and shrubs distributed in 207 genera and 68 families. The most diverse families are Fabaceae, Moraceae, Rubiaceae, Rutaceae, Lauraceae, Apocynaceae, Meliaceae, Malvaceae, Phyllanthaceae, and Anacardiaceae, representing 48% of total woody flora. The sanctuary shelters 263 native and six exotic plant species. Thirty-nine species were endemic to the Western Ghats, five species to peninsular India and one species to the Western Ghats and Andaman & Nicobar Islands. Four forest types, i.e., dry deciduous, moist deciduous, semi-evergreen, and evergreen forests, are represented in the sanctuary. Of the total species, only seven occurred in all forest types, while 111 species are exclusive to a single forest type. One-hundred-and-four taxa were assessed for the International Union for Conservation of Nature & Natural Resources (IUCN) Red List. Ten species that fall under Near Threatened, Vulnerable, and Endangered categories were encountered occasionally. The baseline data generated on plant diversity will be useful in highlighting the importance of these forests for species conservation and forest management. Such data form a cornerstone for further research. For instance, to understand the effect of invasive species and human impacts on the diversity of the region. 


2017 ◽  
Vol 63 (No. 6) ◽  
pp. 245-253 ◽  
Author(s):  
Khaleghi Mohammad Reza

In recent decades, due to rapid human population increases and in its results, destructive effects of anthropogenic activities on natural resources have become a great challenge. Land use and vegetation are important factors in soil erosion and runoff generation. This study was performed to assess the effects of different amounts of forest cover on the control of runoff and soil loss in the Talar basin, which is located in Mazandaran province, using a runoffrainfall model, geographical information system (GIS) and remote sensing (RS) to determine the hydrologic effects of deforestation on the Talar watershed (north of Iran). A runoff-rainfall model has been presented using GIS (HECGeoHMS) and hydrologic model (HEC-HMS). Land use changes (deforestation) and anthropogenic activities (roads and impervious surfaces development) were evaluated using RS techniques and satellite images. We used the Soil Conservation Service and Curve Number methods for hydrograph simulation and runoff estimation, respectively. First, a model was performed and optimized. Afterward, the optimized model was evaluated by other six events of floods (model validation). According to the obtained results, the runoff generation potential has been increased in the Talar watershed due to deforestation during the last forty years. Land use changes cause an increase in runoff volume and flood peak discharge.


2020 ◽  
Author(s):  
Patricia Kaye Tahura Dumandan

Understanding the mechanisms driving biodiversity patterns amidst an era of global environmental change is the core of modern ecological research. The magnitude of biodiversity losses associated with anthropogenic activities has prompted resource managers and ecologists alike to identify strategies to address conservation issues. Broadly, two types of approaches are employed to answer ecological research questions: 1) single-species and 2) ecosystem-based approach. Single-species approaches are often useful to elucidate mechanisms driving population trajectories of individual species. On the other hand, ecosystem-based approaches can help in identifying general patterns that may be useful for multi-species management. Here, I used both approaches in assessing broad-scale patterns and mechanisms driving count trends of migrating raptors recorded at Hawk Mountain Sanctuary (HMS), Pennsylvania. In the first chapter, I used a hierarchical breakpoint model to identify the assemblage-wide and species-specific timing of the shifts in count trends. Then I evaluated if changes in trend directionality of counts were linked to species’ traits (body size, population size, migratory behavior, tolerance to human presence, DDT (dichlorodiphenyltrichlorethane) susceptibility, habitat or dietary specialization). I found that an assemblage-wide shift in counts occurred around 1974, and this timing was common among 14 of the 16 species in the assemblage. Moreover, I found that habitat specialization appeared to explain the synchronous positive and negative count trends of multiple species. Other traits that I evaluated were not consistently associated with either types of trends. The temporal shift in trends in 1974 emphasized the relative importance of DDT, an organochlorine known to have adversely influenced several wildlife species and was banned in the US around the 1970s, in driving population dynamics of raptor species. However, because the counts of species susceptible to DDT were highly variable after 1974, this may suggest that a suite of additional factors, acting together, affected the recovery of species from DDT-associated declines. Additionally, the potential role of habitat specialization in count trends may suggest important linkages between habitat use and demography. In the second chapter, I used a generalized linear mixed-effects model to assess the relationships between changes in the count totals and total proportional cover of major land-use types in nine states located in the northeastern US (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont). The hierarchical modelling approach that I used allowed me to identify average and species-specific responses to the proportional cover of forested and urban area. These land-use variables were not associated with overall raptor counts. However, species-specific responses were variable and significant. I found that counts of Northern Goshawk, American Kestrel, Rough-legged Hawk, Sharp-shinned Hawk, and Red-tailed Hawk were positively associated with forest cover. On the other hand, Turkey and Black Vultures, Bald Eagle, and Peregrine Falcon were positively associated with urban cover. Moreover, Red-shouldered Hawk, Broad-winged Hawk, and Northern Harrier were not significantly associated with forest cover but were negatively associated with urban cover. Merlin and Cooper’s Hawk exhibited similar non-significant associations to forest but positive associations with urban cover. Finally, Golden Eagle and Osprey were not significantly associated with either land-use variables. These results provided insights on the potential influence of land-use changes on the demography of migrating raptors. Thus, these findings may be useful in improving our predictions of the population trajectories of these species in future landscape scenarios. These results illustrate the utility of evaluating species-level and assemblage-wide patterns in long-term count data. In this case, it allowed me to identify general patterns in counts of migrating raptors and gain detailed insights on the responses of individual species to land-use changes. In doing so, I was able to better understand the potential drivers of their ecological dynamics. By integrating information from these two approaches, we can expect to obtain a better understanding of natural systems and consequently, increase the probability of successful conservation outcomes.


2016 ◽  
Vol 4 (3) ◽  
pp. 1 ◽  
Author(s):  
Lirih Wigaty ◽  
Samsul Bakri ◽  
Trio Santoso ◽  
Dyah Wulan S. R. Wardani

Ecological disruption as a result of changes in the area of forest cover to other land uses can affect the microclimate and impact toward malaria morbidity.   Malaria is an infectious disease caused by protozoa a genus of Plasmodium that transmitted by female Anopheles sp. mosquito vectors.  The environmental factors that play a role in the risk to transmission of malaria related to vector breeding places.   The purpose of this research is establish the impact of land use changes toward malaria morbidity. This study was conducted from March to September 2015.   Dynamics of land use changes in regency/city be identified through interpretation of landsat imagery in 2002, 2009, and 2014 with supervised classification and resulted in percentage of land use, the influence of impact toward malaria morbidity processed using multiple linear regression models.  Parameter optimization using statistic software.   The result showed that the impact of positive variable that significant toward malaria morbidity are mangrove forest and total population, while impact of negative variable that significant are extensive swamp and health personnel.   Variable which not impact that significant toward malaria morbidity are forests, community forests, undeveloped land, dry land, other land uses, population density, precipitation, unhealthyhousing, urban, and physiographic. Keywords : land use, malaria morbidity


2016 ◽  
Vol 16 (4) ◽  
pp. 247-256 ◽  
Author(s):  
Dawid Weisbrodt ◽  
Dirk Enters ◽  
Maurycy Jacek Żarczyński ◽  
Anna Izabela Poraj-Górska ◽  
Wojciech Tylmann

Abstract Analysis of non-pollen palynomorphs supplemented by pollen analysis, microcharcoal analysis and geochemical data from laminated sediments from Lake Jaczno were used to establish different phases of land-use in the catchment between c.a. AD 1840 and AD 2013. The results show that during the first eighty years the vicinity of the lake was heavily deforested. During this period erosional inputs caused accumulation of abundant fungal spores, indicators of pastures and natural fertilizers (manure) as well as of corroded pollen grains and charcoal. Gradual regeneration of forest cover took place after World War II, when expansion of pioneer trees occurred (Betula, Salix, Carpinus, Populus). At the same time, a considerable increase in the lake trophy was observed, leading to the changes in phytoplankton and macrophyte communities: a decrease in the proportion of Botryococcus and an increase in the Nymphaea alba population. The non-pollen palynomorphs analyses indicate the substantial human impact that caused changing local environmental conditions, compatible with the results based on pollen analysis and geochemical data.


Author(s):  
Stanley Atonya ◽  
Luke OLANG ◽  
Lewis Morara

A comprehensive undertanding of land-use/cover(LUC) change processes, their trends and future trajectories is essential for the development of sustainable land-use management plans. While contemporay tools can today be employed to monitor historical land-cover changes, prediction of future change trajectories in most rural agro-ecological landscapes remains a challenge. This study evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya and Uganda for the period 2017-2047. The land use change drivers were obtained through a rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change trajectories under different scenarios. The model was validated using historical land cover maps for the period of 2008 and 2017, producing overall accuracy result of 85.7% and a Kappa coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the other hand, built-up areas were mainly influenced by population density. Under the afforestation scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely, under the intense agriculture scenario, cropland and pasture cover types occupied 78% of the basin. However, in a scenario where natural forest and wetlands were protected, cropland and pasture only expanded by 74%. The study successfully outlined proximate land cover change drivers, including potential future changes and could be used to support the development of sustainable long-term transboundary land-use plans and policy.


2021 ◽  
Vol 193 (12) ◽  
Author(s):  
T. M. Sharannya ◽  
K. Venkatesh ◽  
Amogh Mudbhatkal ◽  
M. Dineshkumar ◽  
Amai Mahesha

Sign in / Sign up

Export Citation Format

Share Document