Involvement of CA++ and Calmodulin in the Intracellular Migration of Influenza's Hemagglutinin to the Apical Surface of MDCK Cells

Author(s):  
E. Rodriguez-Boulan ◽  
K.T. Paskiet ◽  
E. Bard

The polarized distribution of surface components between apical and basolateral domains of the plasma membrane constitutes the basis of epithelial function. We are currently studying the mechanisms employed by epithelial cells to segregate different sets of integral proteins in two opposite regions of the plasma membrane. For this purpose, we are utilizing a model system which involves the infection of polarized epithelial cell lines, such as the dog kidney cell line MDCK, with enveloped RNA viruses. Influenza virus and two paramyxoviruses bud from the apical surface regions of MDCK cells, vesicular stomatitis virus (VSV), a rhabdovirus, is assembled instead from the basolateral surface. A main determinant of polarized budding appears to be the addressing of viral envelope glycoproteins to the surface domain that the virus utilizes for budding. The mechanisms and intracellular pathways involved in this sorting are probably the same as those utilized by the cell for its own surface proteins.

2002 ◽  
Vol 76 (7) ◽  
pp. 3544-3553 ◽  
Author(s):  
Rosalia Mora ◽  
Enrique Rodriguez-Boulan ◽  
Peter Palese ◽  
Adolfo García-Sastre

ABSTRACT Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA.


1981 ◽  
Vol 89 (2) ◽  
pp. 230-239 ◽  
Author(s):  
R F Green ◽  
H K Meiss ◽  
E Rodriguez-Boulan

Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.


1996 ◽  
Vol 133 (3) ◽  
pp. 543-558 ◽  
Author(s):  
A Müsch ◽  
H Xu ◽  
D Shields ◽  
E Rodriguez-Boulan

Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


2009 ◽  
Vol 83 (6) ◽  
pp. 2611-2622 ◽  
Author(s):  
Subash C. Das ◽  
Debasis Panda ◽  
Debasis Nayak ◽  
Asit K. Pattnaik

ABSTRACT A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-ΔM-Mtc and VSV-ΔM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-ΔM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-ΔM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.


2006 ◽  
Vol 172 (7) ◽  
pp. 1023-1034 ◽  
Author(s):  
Simona Paladino ◽  
Thomas Pocard ◽  
Maria Agata Catino ◽  
Chiara Zurzolo

The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin–Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.


1997 ◽  
Vol 137 (5) ◽  
pp. 1029-1040 ◽  
Author(s):  
Marie-José J.E. Bijlmakers ◽  
Misako Isobe-Nakamura ◽  
Lindsay J. Ruddock ◽  
Mark Marsh

In T lymphocytes, the Src-family protein tyrosine kinase p56lck (Lck) is mostly associated with the cytoplasmic face of the plasma membrane. To determine how this distribution is achieved, we analyzed the location of Lck in lymphoid and in transfected nonlymphoid cells by immunofluorescence. We found that in T cells Lck was targeted correctly, independently of the cell surface proteins CD4 and CD8 with which it interacts. Similarly, in transfected NIH-3T3 fibroblasts, Lck was localized at the plasma membrane, indicating that T cell–specific proteins are not required for targeting. Some variation in subcellular distribution was observed when Lck was expressed in HeLa and MDCK cells. In these cells, Lck associated with both the plasma membrane and the Golgi apparatus, while subsequent expression of CD4 resulted in the loss of Golgi-associated staining. Together, these data indicate that Lck contains intrinsic signals for targeting to the plasma membrane. Furthermore, delivery to this site may be achieved via association with exocytic transport vesicles. A mutant Lck molecule in which the palmitoylation site at cysteine 5 was changed to lysine (LC2) localized to the plasma membrane and the Golgi region in NIH3T3 cells. However, the localization of a mutant in which the palmitoylation site at cysteine 3 was changed to serine (LC1) was indistinguishable from wild-type Lck. Chimeras composed of only the unique domain of Lck linked to either c-Src or the green fluorescent protein similarly localized to the plasma membrane of NIH-3T3 cells. Thus, the targeting of Lck appears to be determined primarily by its unique domain and may be influenced by the use of different palmitoylation sites.


Author(s):  
Paulo S. Caceres ◽  
Diego Gravotta ◽  
Patrick J. Zager ◽  
Noah Dephoure ◽  
Enrique Rodriguez-Boulan

The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.


2003 ◽  
Vol 23 (7) ◽  
pp. 2600-2607 ◽  
Author(s):  
Ying Luo ◽  
Peter M. Vassilev ◽  
Xiaogang Li ◽  
Yoshifumi Kawanabe ◽  
Jing Zhou

ABSTRACT Mutations in polycystin 2 (PC2), a Ca2+-permeable cation channel, cause autosomal dominant polycystic kidney disease. Whether PC2 functions in the endoplasmic reticulum (ER) or in the plasma membrane has been controversial. Here we generated and characterized a polyclonal antibody against PC2, determined the subcellular localization of both endogenous and transfected PC2 by immunohistochemistry and biotinylation of cell surface proteins, and assessed PC2 channel properties with electrophysiology. Endogenous PC2 was found in the plasma membrane and the primary cilium of mouse inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells, whereas heterologously expressed PC2 showed a predominant ER localization. Patch-clamping of IMCD cells expressing endogenous or heterologous PC2 confirmed the presence of the channel on the plasma membrane. Treatment with chaperone-like factors facilitated the translocation of the PC2 channel to the plasma membrane from intracellular pools. The unitary conductances, channel kinetics, and other characteristics of both endogenously and heterologously expressed PC2 were similar to those described in our previous study in Xenopus laevis oocytes. These results show that PC2 functions as a plasma membrane channel in renal epithelia and suggest that PC2 contributes to Ca2+ entry and transport of other cations in defined nephron segments in vivo.


1987 ◽  
Vol 104 (2) ◽  
pp. 231-241 ◽  
Author(s):  
M J Rindler ◽  
I E Ivanov ◽  
D D Sabatini

The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D. D. Sabatini, 1985, J. Cell Biol., 100:136-151). The microtubule-depolymerizing agents colchicine and nocodazole, as well as the microtubule assembly-promoting drug taxol, were found to interfere with the normal polarized delivery and exclusive segregation of hemagglutinin (HA) to the apical surface but not with the delivery and initial accumulation of G on the basolateral surface. Immunofluorescence analysis of permeabilized monolayers of influenza-infected MDCK cells treated with the microtubule-acting drugs demonstrated the presence of substantial amounts of HA protein on both the apical and basolateral surfaces. Moreover, in cells infected with the wild-type influenza virus, particles budded from both surfaces. Viral counts in electron micrographs showed that approximately 40% of the released viral particles accumulated in the intercellular spaces or were trapped between the cell and monolayer and the collagen support as compared to less than 1% on the basolateral surface of untreated infected cells. The effect of the microtubule inhibitors was not a result of a rapid redistribution of glycoprotein molecules initially delivered to the apical surface since a redistribution was not observed when the inhibitors were added to the cells after the HA was permitted to reach the apical surface at the permissive temperature and the synthesis of new HA was inhibited with cycloheximide. The altered segregation of the HA protein that occurs may result from the dispersal of the Golgi apparatus induced by the inhibitors or from the disruption of putative microtubules containing tracks that could direct vesicles from the trans Golgi apparatus to the cell surface. Since the vesicular stomatitis virus G protein is basolaterally segregated even when the Golgi elements are dispersed and hypothetical tracks disrupted, it appears that the two viral envelope glycoproteins are segregated by fundamentally different mechanisms and that the apical surface may be incapable of accepting vesicles carrying the G protein.


Sign in / Sign up

Export Citation Format

Share Document