scholarly journals Native Polycystin 2 Functions as a Plasma Membrane Ca2+-Permeable Cation Channel in Renal Epithelia

2003 ◽  
Vol 23 (7) ◽  
pp. 2600-2607 ◽  
Author(s):  
Ying Luo ◽  
Peter M. Vassilev ◽  
Xiaogang Li ◽  
Yoshifumi Kawanabe ◽  
Jing Zhou

ABSTRACT Mutations in polycystin 2 (PC2), a Ca2+-permeable cation channel, cause autosomal dominant polycystic kidney disease. Whether PC2 functions in the endoplasmic reticulum (ER) or in the plasma membrane has been controversial. Here we generated and characterized a polyclonal antibody against PC2, determined the subcellular localization of both endogenous and transfected PC2 by immunohistochemistry and biotinylation of cell surface proteins, and assessed PC2 channel properties with electrophysiology. Endogenous PC2 was found in the plasma membrane and the primary cilium of mouse inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells, whereas heterologously expressed PC2 showed a predominant ER localization. Patch-clamping of IMCD cells expressing endogenous or heterologous PC2 confirmed the presence of the channel on the plasma membrane. Treatment with chaperone-like factors facilitated the translocation of the PC2 channel to the plasma membrane from intracellular pools. The unitary conductances, channel kinetics, and other characteristics of both endogenously and heterologously expressed PC2 were similar to those described in our previous study in Xenopus laevis oocytes. These results show that PC2 functions as a plasma membrane channel in renal epithelia and suggest that PC2 contributes to Ca2+ entry and transport of other cations in defined nephron segments in vivo.

1992 ◽  
Vol 20 (2) ◽  
pp. 218-221
Author(s):  
Henning F. Bjerregaard

An established epithelial cell line (A6) from a South African clawed toad (Xenopus laevis) kidney was used as a model for the corneal epithelium of the eye in order to determine ocular irritancy. When grown on Millipore filter inserts, A6 cells form a monolayer epithelium of high electrical resistance and generate a trans-epithelial potential difference. These two easily-measured electrophysiological endpoints showed a dose-related decrease after exposure for 24 hours to seven selected chemicals of different ocular irritancy potential. It was demonstrated that both trans-epithelial resistance and potential ranked closely with in vivo eye irritancy data and correlated well (r = 0.96) with loss of trans-epithelial impermeability of Madin-Darby canine kidney (MDCK) cells, detected by use of a fluorescein leakage assay.


2008 ◽  
Vol 295 (5) ◽  
pp. F1336-F1341 ◽  
Author(s):  
Nathan W. Blessing ◽  
Mitsi A. Blount ◽  
Jeff M. Sands ◽  
Christopher F. Martin ◽  
Janet D. Klein

The UT-A1 and UT-A3 urea transporters are expressed in the terminal inner medullary collecting duct (IMCD) and play an important role in the production of concentrated urine. We showed that both hyperosmolarity and vasopressin increase urea permeability in perfused rat terminal IMCDs and that UT-A1 and UT-A3 accumulate in the plasma membrane in response to vasopressin. In this study, we investigated whether hyperosmolarity causes UT-A1 and/or UT-A3 to accumulate in the plasma membrane or represents a complimentary stimulatory pathway. Rat IMCD suspensions were incubated in 450 vs. 900 mosM solutions. We biotinylated the IMCD surface proteins, collected, and analyzed them. Membrane accumulation was assessed by Western blotting of the biotinylated protein pool probed with anti-UT-A1 or anti-UT-A3. We studied the effect of NaCl, urea, and sucrose as osmotic agents. Membrane-associated UT-A1 and UT-A3 increased relative to control levels when either NaCl (UT-A1 increased 37 ± 6%; UT-A3 increased 46 ± 13%) or sucrose (UT-A1 increased 81 ± 13%; UT-A3 increased 60 ± 8%) was used to increase osmolarity. There was no increase in membrane UT-A1 or UT-A3 when urea was added. Analogously, UT-A1 phosphorylation was increased in NaCl- and sucrose- but not in urea-based hyperosmolar solutions. Hypertonicity also increased UT-A3 phosphorylation. We conclude that the increase in the urea permeability in response to hyperosmolarity reflects both UT-A1 and UT-A3 movement to the plasma membrane and may be a direct response to tonicity. Furthermore, this movement is accompanied by, and may require, increased phosphorylation in response to hypertonicity.


1994 ◽  
Vol 5 (10) ◽  
pp. 1093-1103 ◽  
Author(s):  
A K Rajasekaran ◽  
J S Humphrey ◽  
M Wagner ◽  
G Miesenböck ◽  
A Le Bivic ◽  
...  

Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


2006 ◽  
Vol 172 (7) ◽  
pp. 1023-1034 ◽  
Author(s):  
Simona Paladino ◽  
Thomas Pocard ◽  
Maria Agata Catino ◽  
Chiara Zurzolo

The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin–Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.


1997 ◽  
Vol 137 (5) ◽  
pp. 1029-1040 ◽  
Author(s):  
Marie-José J.E. Bijlmakers ◽  
Misako Isobe-Nakamura ◽  
Lindsay J. Ruddock ◽  
Mark Marsh

In T lymphocytes, the Src-family protein tyrosine kinase p56lck (Lck) is mostly associated with the cytoplasmic face of the plasma membrane. To determine how this distribution is achieved, we analyzed the location of Lck in lymphoid and in transfected nonlymphoid cells by immunofluorescence. We found that in T cells Lck was targeted correctly, independently of the cell surface proteins CD4 and CD8 with which it interacts. Similarly, in transfected NIH-3T3 fibroblasts, Lck was localized at the plasma membrane, indicating that T cell–specific proteins are not required for targeting. Some variation in subcellular distribution was observed when Lck was expressed in HeLa and MDCK cells. In these cells, Lck associated with both the plasma membrane and the Golgi apparatus, while subsequent expression of CD4 resulted in the loss of Golgi-associated staining. Together, these data indicate that Lck contains intrinsic signals for targeting to the plasma membrane. Furthermore, delivery to this site may be achieved via association with exocytic transport vesicles. A mutant Lck molecule in which the palmitoylation site at cysteine 5 was changed to lysine (LC2) localized to the plasma membrane and the Golgi region in NIH3T3 cells. However, the localization of a mutant in which the palmitoylation site at cysteine 3 was changed to serine (LC1) was indistinguishable from wild-type Lck. Chimeras composed of only the unique domain of Lck linked to either c-Src or the green fluorescent protein similarly localized to the plasma membrane of NIH-3T3 cells. Thus, the targeting of Lck appears to be determined primarily by its unique domain and may be influenced by the use of different palmitoylation sites.


1990 ◽  
Vol 1 (12) ◽  
pp. 921-936 ◽  
Author(s):  
M J van Zeijl ◽  
K S Matlin

The effects of microtubule perturbation on the transport of two different viral glycoproteins were examined in infected Madin-Darby canine kidney (MDCK) cells grown on both permeable and solid substrata. Quantitative biochemical analysis showed that the microtubule-depolymerizing drug nocodazole inhibited arrival of influenza hemagglutinin on the apical plasma membrane in MDCK cells grown on both substrata. In contrast, the microtubule-stabilizing drug taxol inhibited apical appearance of hemagglutinin only when MDCK cells were grown on permeable substrata. On the basis of hemagglutinin mobility on sodium dodecyl sulfate gels and its sensitivity to endo H, it was evident that nocodazole and taxol arrested hemagglutinin at different intracellular sites. Neither drug caused a significant increase in the amount of hemagglutinin detected on the basolateral plasma membrane domain. In addition, neither drug had any noticeable effect on the transport of the vesicular stomatitis virus (VSV)-G protein to the basolateral surface. These results shed light on previous conflicting reports using this model system and support the hypothesis that microtubules play a role in the delivery of membrane glycoproteins to the apical, but not the basolateral, domain of epithelial cells.


Author(s):  
Paulo S. Caceres ◽  
Diego Gravotta ◽  
Patrick J. Zager ◽  
Noah Dephoure ◽  
Enrique Rodriguez-Boulan

The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.


1999 ◽  
Vol 10 (10) ◽  
pp. 3187-3196 ◽  
Author(s):  
Mikael Simons ◽  
Tim Friedrichson ◽  
Jörg B. Schulz ◽  
Marina Pitto ◽  
Massimo Masserini ◽  
...  

Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid–cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4°C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid–cholesterol microdomains in living cells.


1996 ◽  
Vol 270 (1) ◽  
pp. C200-C207 ◽  
Author(s):  
E. D. Kwon ◽  
K. Zablocki ◽  
E. M. Peters ◽  
K. Y. Jung ◽  
A. Garcia-Perez ◽  
...  

The amount of glycerophosphocholine (GPC) in renal medullary cells in vivo and in cultured renal [Madin-Darby canine kidney (MDCK)] cells varies with extracellular NaCl and urea. We previously showed that this is largely due to modulation of GPC degradation catalyzed by GPC:choline phosphodiesterase (GPC: PDE). GPC also varies inversely with the levels of other compatible osmolytes, the accumulation of which is induced by high tonicity. We tested whether GPC:PDE activity and GPC degradation are affected by accumulation of compatible osmolytes other than GPC. We find that MDCK cell GPC content decreases when the cells take up betaine and/or inositol from the medium. The effect is considerably greater for cells in isosmotic or high-NaCl medium than in high-urea medium. This difference is associated with suppression of betaine and inositol accumulation with high urea. We then measured GPC:PDE activity with a novel chemiluminescent assay. Addition of inositol and/or betaine to the medium greatly increases GPC:PDE activity in cells in isosmotic or high-NaCl media, but the increase is much less in high-urea medium. The increases in GPC:PDE activity, associated with the presence of betaine, are accompanied by commensurate increases in absolute rates of endogenous GPC degradation by cells in isosmotic or high-NaCl medium. We found previously that, in MDCK cells incubated for 2 days in high-NaCl medium, the rate of GPC synthesis from phosphatidylcholine is increased, correlated with an increase in phospholipase activity. However, in the present experiments, betaine accumulation has no effect on phospholipase activity under those conditions and, thus, presumably does not affect GPC synthesis. Collectively, these data support the conclusion that betaine and/or inositol reduces GPC by increasing GPC degradation catalyzed by GPC:PDE. This mechanism enables GPC to be reciprocally regulated relative to other compatible osmolytes, thus maintaining an appropriate total osmolyte content.


Sign in / Sign up

Export Citation Format

Share Document