Annealing Of Radiation Damage in Tungsten

Author(s):  
Robert C. Rau ◽  
John Moteff

Transmission electron microscopy has been used to study the thermal annealing of radiation induced defect clusters in polycrystalline tungsten. Specimens were taken from cylindrical tensile bars which had been irradiated to a fast (E > 1 MeV) neutron fluence of 4.2 × 1019 n/cm2 at 70°C, annealed for one hour at various temperatures in argon, and tensile tested at 240°C in helium. Foils from both the unstressed button heads and the reduced areas near the fracture were examined.Figure 1 shows typical microstructures in button head foils. In the unannealed condition, Fig. 1(a), a dispersion of fine dot clusters was present. Annealing at 435°C, Fig. 1(b), produced an apparent slight decrease in cluster concentration, but annealing at 740°C, Fig. 1(C), resulted in a noticeable densification of the clusters. Finally, annealing at 900°C and 1040°C, Figs. 1(d) and (e), caused a definite decrease in cluster concentration and led to the formation of resolvable dislocation loops.

1985 ◽  
Vol 52 ◽  
Author(s):  
Muhammad Z. Numan ◽  
Z. H. Lu ◽  
W. K. Chu ◽  
D. Fathy ◽  
J. J. Wortman

ABSTRACTDeactivation of ion implanted and rapid thermal annealed (RTA) metastable arsenic in silicon during subsequent furnace annealing has been studied by sheet resistance measurement, Rutherford backs cat t ering/ channeling (RBS), and transmission electron microscopy (TEM). Following RTA, thermal annealing induces deactivation of the dopant which increases the sheet resistivity monotonically with temperature for a very short time, Dislocation loops are formed near the peak of As concentration at post-anneal temperatures of 750°C or higher, where deactivation rate is fast. At lower temperatures deactivation is accompanied by displacement of As atoms, possibly forming clusters.


1996 ◽  
Vol 439 ◽  
Author(s):  
Kazuo Furuya ◽  
Min Piao ◽  
Nobuhiro Ishikawa ◽  
Tetsuya Saito

AbstractDefect clusters in Al during electron and ion irradiation have been investigated using highresolution transmission electron microscopy (HRTEM). An ION/HVEM system which consists of a high-voltage TEM and ion implanters was used for in-situ observation of damage evolution under 1000 keV electrons and 15 keV He+ irradiation at room temperature. HRTEM of Al in [110] orientation showed many planar defects along { 111 } planes during electron irradiation, while a high density of small polyhedron-shaped cavities (He-bubbles) was observed in addition to the planar defects after He+ irradiation. Multi-slice image simulation of various models of dislocation loops indicated the planar defect as an interstitial-type Frank loop.


Author(s):  
J. J. Hren ◽  
W. D. Cooper ◽  
L. J. Sykes

Small dislocation loops observed by transmission electron microscopy exhibit a characteristic black-white strain contrast when observed under dynamical imaging conditions. In many cases, the topography and orientation of the image may be used to determine the nature of the loop crystallography. Two distinct but somewhat overlapping procedures have been developed for the contrast analysis and identification of small dislocation loops. One group of investigators has emphasized the use of the topography of the image as the principle tool for analysis. The major premise of this method is that the characteristic details of the image topography are dependent only on the magnitude of the dot product between the loop Burgers vector and the diffracting vector. This technique is commonly referred to as the (g•b) analysis. A second group of investigators has emphasized the use of the orientation of the direction of black-white contrast as the primary means of analysis.


Author(s):  
Ryuichiro Oshima ◽  
Shoichiro Honda ◽  
Tetsuo Tanabe

In order to examine the origin of extra diffraction spots and streaks observed in selected area diffraction patterns of deuterium irradiated silicon, systematic diffraction experiments have been carried out by using parallel beam illumination.Disc specimens 3mm in diameter and 0.5mm thick were prepared from a float zone silicon single crystal(B doped, 7kΩm), and were chemically thinned in a mixed solution of nitric acid and hydrogen fluoride to make a small hole at the center for transmission electron microscopy. The pre-thinned samples were irradiated with deuterium ions at temperatures between 300-673K at 20keV to a dose of 1022ions/m2, and induced lattice defects were examined under a JEOL 200CX electron microscope operated at 160kV.No indication of formation of amorphous was obtained in the present experiments. Figure 1 shows an example of defects induced by irradiation at 300K with a dose of 2xl021ions/m2. A large number of defect clusters are seen in the micrograph.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3358-3359
Author(s):  
Hyeokmin Choe ◽  
Eric Montgomery ◽  
Ilya Ponomarev ◽  
June Lau ◽  
Yimei Zhu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1431
Author(s):  
Seiichiro Ii ◽  
Takero Enami ◽  
Takahito Ohmura ◽  
Sadahiro Tsurekawa

Transmission electron microscopy in situ straining experiments of Al single crystals with different initial lattice defect densities have been performed. The as-focused ion beam (FIB)-processed pillar sample contained a high density of prismatic dislocation loops with the <111> Burgers vector, while the post-annealed specimen had an almost defect-free microstructure. In both specimens, plastic deformation occurred with repetitive stress drops (∆σ). The stress drops were accompanied by certain dislocation motions, suggesting the dislocation avalanche phenomenon. ∆σ for the as-FIB Al pillar sample was smaller than that for the post-annealed Al sample. This can be considered to be because of the interaction of gliding dislocations with immobile prismatic dislocation loops introduced by the FIB. The reloading process after stress reduction was dominated by elastic behavior because the slope of the load–displacement curve for reloading was close to the Young’s modulus of Al. Microplasticity was observed during the load-recovery process, suggesting that microyielding and a dislocation avalanche repeatedly occurred, leading to intermittent plasticity as an elementary step of macroplastic deformation.


2011 ◽  
Vol 364 ◽  
pp. 278-282
Author(s):  
Rida Tajau ◽  
Dahlan Khairul Mohd. Zaman ◽  
Mohd Hilmi Mahmood ◽  
Wan Md Zin Wan Yunus ◽  
Hashim Kamaruddin

In this study, we report the preparation of Acrylated Palm Oil (APO) nanoparticles using aqueous Cetyltrimethylammonium bromide (CTAB) microemulsion system. This microemulsion system which contains the dispersed APO nanodroplets was subjected to the gamma irradiation to induce the formation of the crosslinked APO nanoparticles. The dynamic light scattering (DLS), the Fourier Transform Infrared (FTIR) spectrocospy and the Transmission Electron Microscopy (TEM) were used to characterize the size and the chemical structure of the nanoparticle. Sized of the APO nanoor microparticle can be varied depended on the volumes of the modified palm oil and the irradiation doses. Their size is in the range of 73 to 100 nanometer (nm) after irradiation using gamma irradiator. This radiation-induced method provides a free initiator induced and easy to control process as compared to the classical or chemical initiator process.


Sign in / Sign up

Export Citation Format

Share Document