A Tilting Cold Stage For The AEI EM802

Author(s):  
P.R. Swann ◽  
G.R. Swann

A tilting cold stage of unique design and with exceptional facilities has been developed commercially for the AEI EM802. The design consists of a double tilting stage allowing ±25° of specimen tilt about two orthogonal axes, with specimen cooling to any temperature in the range -150°C to room temperature. Since the specimen plane is maintained at the normal focal position of the objective lens and ‘bumping’ is eliminated by the circulation of gaseous rather than liquid nitrogen, the high resolution of the microscope is maintained.The apparatus consists of a translation stage, A, containing all the tilting controls, a simple specimen cartridge, B, and a hollow annulus, C, clamped to the translation stage, through which flows the cooling gas from the liquid nitrogen Dewar, D.

Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
A.W. Nicholls ◽  
P.E. Bovey

A recently developed cryotransfer facility has been successfully used to transfer both hydrated and dehydrated sections from a cryo-microtome to the column of the HB501 STEM with no significant warming or ice formation during transfer. This new accessory enables X-ray and energy loss analytical work to be carried out on frozen biological sections at much higher spatial resolution than is possible with conventional TEM systems.The construction and operation of the cryotransfer stage are summarized schematically in Figs. 1 and 2. Fig. 1 shows the central region of the HB501 optical column containing the objective lens (1), the post-specimen dc ana ac scan coil assembly (2), the annular dark field detector (3), the diffraction screen (4) and the airlock (5) through which room temperature specimens are normally loaded into the top-entry stage. A special stage base (6) is used which incorporates a liquid nitrogen-cooled block into which specimens are loaded by means of a side-entry manipulator (10). This manipulator is mounted on a support bracket (7) and enters the column through an isolation valve (8). Movement is achieved by a mechanism (not shown) mounted on the outer end of the bracket (7) and vacuum sealed by a bellows (11). The manipulator is liquid nitrogen-cooled by cooling pipes passing axially through the bellows. Loading and unloading of specimens is via an entry lock (9) which can be vented to dry nitrogen. A liquid nitrogen cooled, shrouded transfer rod (not shown) is used to transport specimens from the cryo-microtome to the entry lock.


Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
Michael Beer ◽  
J. W. Wiggins ◽  
David Woodruff ◽  
Jon Zubin

A high resolution scanning transmission electron microscope of the type developed by A. V. Crewe is under construction in this laboratory. The basic design is completed and construction is under way with completion expected by the end of this year.The optical column of the microscope will consist of a field emission electron source, an accelerating lens, condenser lens, objective lens, diffraction lens, an energy dispersive spectrometer, and three electron detectors. For any accelerating voltage the condenser lens function to provide a parallel beam at the entrance of the objective lens. The diffraction lens is weak and its current will be controlled by the objective lens current to give an electron diffraction pattern size which is independent of small changes in the objective lens current made to achieve focus at the specimen. The objective lens demagnifies the image of the field emission source so that its Gaussian size is small compared to the aberration limit.


Author(s):  
M. Müller ◽  
R. Hermann

Three major factors must be concomitantly assessed in order to extract relevant structural information from the surface of biological material at high resolution (2-3nm).Procedures based on chemical fixation and dehydration in graded solvent series seem inappropriate when aiming for TEM-like resolution. Cells inevitably shrink up to 30-70% of their initial volume during gehydration; important surface components e.g. glycoproteins may be lost. These problems may be circumvented by preparation techniques based on cryofixation. Freezedrying and freeze-substitution followed by critical point drying yields improved structural preservation in TEM. An appropriate preservation of dimensional integrity may be achieved by freeze-drying at - 85° C. The sample shrinks and may partially collapse as it is warmed to room temperature for subsequent SEM study. Observations at low temperatures are therefore a necessary prerequisite for high fidelity SEM. Compromises however have been unavoidable up until now. Aldehyde prefixation is frequently needed prior to freeze drying, rendering the sample resistant to treatment with distilled water.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
John G. Sheehan

The goal is to examine with high resolution cryo-SEM aqueous particulate suspensions used in coatings for printable paper. A metal-coating chamber for cryo-preparation of such suspensions was described previously. Here, a new conduction-cooling system for the stage and cold-trap in an SEM specimen chamber is described. Its advantages and disadvantages are compared to a convection-cooling system made by Hexland (model CT1000A) and its mechanical stability is demonstrated by examining a sample of styrene-butadiene latex.In recent high resolution cryo-SEM, some stages are cooled by conduction, others by convection. In the latter, heat is convected from the specimen stage by cold nitrogen gas from a liquid-nitrogen cooled evaporative heat exchanger. The advantage is the fast cooling: the Hexland CT1000A cools the stage from ambient temperature to 88 K in about 20 min. However it consumes huge amounts of liquid-nitrogen and nitrogen gas: about 1 ℓ/h of liquid-nitrogen and 400 gm/h of nitrogen gas. Its liquid-nitrogen vessel must be re-filled at least every 40 min.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


Sign in / Sign up

Export Citation Format

Share Document