Description of a New High Resolution Scanning Transmission EM

Author(s):  
Michael Beer ◽  
J. W. Wiggins ◽  
David Woodruff ◽  
Jon Zubin

A high resolution scanning transmission electron microscope of the type developed by A. V. Crewe is under construction in this laboratory. The basic design is completed and construction is under way with completion expected by the end of this year.The optical column of the microscope will consist of a field emission electron source, an accelerating lens, condenser lens, objective lens, diffraction lens, an energy dispersive spectrometer, and three electron detectors. For any accelerating voltage the condenser lens function to provide a parallel beam at the entrance of the objective lens. The diffraction lens is weak and its current will be controlled by the objective lens current to give an electron diffraction pattern size which is independent of small changes in the objective lens current made to achieve focus at the specimen. The objective lens demagnifies the image of the field emission source so that its Gaussian size is small compared to the aberration limit.

Author(s):  
T. Nagatani

Although the main development of scanning electron microscopy (SEM) has been accomplished mostly by the Cambridge group and it has not been changed so much for about two decades, it should be noted that there have been two important developments to pursuing high resolution of better than 1nm.Most notably, use of a field emission gun developed by Crewe et al for the scanning transmission electron microscope (STEM) to form a fine electron beam has been most effective in SEMs due to its high brightness and low energy spread. Thus, several models of field emission (FE) SEMs have been developed in the early ’70s and commercialized with a resolution of 2∼3nm at around 30kV.The second development is to use a highly excited objective lens. The specimen has to be set inside the pole-pieces (so-called “in-lens” type).


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
J. W. Wiggins ◽  
M. Beer ◽  
D. C. Woodruff ◽  
J. A. Zubin

A high resolution scanning transmission electron microscope has been constructed and is operating. The initial task of this instrument is to attempt the sequencing of DNA by heavy-atom specific staining. It is also suitable for many other biological investigations requiring high resolution, low contamination and minimum radiation damage.The basic optical parameters are: 20 to 100 KV acceleration potential, objective lens focal length of 1.0 mm. with Cs = 0.7 mm., and two additional lenses designated as condensor and diffraction lenses. The purpose of the condensor lens is to provide a parallel beam incident to the objective, and the diffraction lens produces an image of the back focal plane of the objective in the plane of an annular detector.


1997 ◽  
Vol 504 ◽  
Author(s):  
David C. Bell ◽  
Anthony J. Garratt-Reed ◽  
Linn W. Hobbst

ABSTRACTRadial density functions (RDFs) provide important information about short- and ntermediaterange structure of topologically-disordered materials such as glasses and irradiation-amorphized materials. We have determined RDFs for irradiation-amorphized SiO2, AIPO4 and SiC by energy-filtered electron diffraction methods in a field-emission scanning transmission electron microscope (FEG-STEM) equipped with a digital parallel-detection electron energy-loss spectrometer. Post-specimen rocking was used to minimize the effects of spherical aberration in the objective lens, which interfere with the acquisition of data collected by pre-specimen rocking. Useful energy-filtered data has been collected beyond an angular range defined by q = 2 sin(Θ/2)/λ = 25 nm−1


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Sign in / Sign up

Export Citation Format

Share Document