Visualization of the Adenovirus DNA Terminal Protein, Its Gene, and Messenger RNA

Author(s):  
Thomas R. Broker ◽  
Louise T. Chow

Studies using biochemical and electron microscopical RNA:DNA heteroduplex methods have shown that the transcription patterns of the human adenoviruses are extremely complicated. Almost all early and late mRNAs are spliced. Each transcriptional unit produces a family of RNAs that share common 5' and 3' ends but have alternative splicing. Most of the genome is expressed as relatively abundant mRNAs, except for the region between coordinates 16 and 27. This segment encodes the RNA leader components for the late rightward-transcribed (r-strand) RNAs. However, DNA-negative temperature-sensitive mutations have been mapped to this interval. Recently, experiments by several laboratories using different techniques have elucidated how these mutations might affect DNA replication.A protein of 55,000 daltons (55KD) M is covalently joined to each 5' terminus of adenovirus DNA isolated from virions. The ends of replicating DNA in infected cells are also bound to proteins. The linkage is via a phosphodiester bond between serine and the terminal deoxy-cytidine.

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chathura D. Suraweera ◽  
Mark G. Hinds ◽  
Marc Kvansakul

Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.


1979 ◽  
Vol 57 (6) ◽  
pp. 902-913 ◽  
Author(s):  
Patrick W. K. Lee ◽  
John S. Colter

Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA−ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 °C) to the nonpermissive (39 °C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA− phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 °C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant.Subviral (53 S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 °C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.


1981 ◽  
Vol 1 (9) ◽  
pp. 807-813 ◽  
Author(s):  
M G Katze ◽  
H Persson ◽  
L Philipson

An adenovirus type 5 host range mutant (hr-1) located in region E1A and phenotypically defective in expressing viral messenger ribonucleic acid (RNA) from other early regions (Berk et al., Cell 17:935-944, 1979) was analyzed for accumulation of viral RNA in the presence of protein synthesis inhibitors. Nuclear RNA was transcribed from all early regions at the same rate, regardless of whether the drug was present or absent. As expected, low or undetectable levels of RNA were found in the cytoplasm of hr-1-infected cells compared with the wild-type adenovirus type 5 in the absence of drug. When anisomycin was added 30 min before hr-1 infection, cytoplasmic RNA was abundant from early regions E3 and E4 when assayed by filter hybridization. In accordance, early regions E3 and E4 viral messenger RNA species were detected by the S1 endonuclease mapping technique only in hr-1-infected cells that were treated with the drug. Similar results were obtained by in vitro translation studies. Together, these results suggest that this adenovirus type 5 mutant lacks a viral gene product necessary for accumulation of viral messenger RNA, but not for transcription. It is proposed that a cellular gene product serves as a negative regulator of viral messenger RNA accumulation at the posttranscriptional level.


2008 ◽  
Vol 89 (8) ◽  
pp. 1873-1880 ◽  
Author(s):  
Qian Yu ◽  
Tiehao Lin ◽  
Guozhong Feng ◽  
Kai Yang ◽  
Yi Pang

A homology search of a public database revealed that Spodoptera litura nucleopolyhedrovirus (SpltNPV) possesses two putative, antiapoptotic genes, p49 and inhibitor of apoptosis 4 (iap4), but their function has not been investigated in its native host cells. In the present study, we used RNA interference (RNAi) to silence the expression of Splt-iap4 and Splt-p49, independently or together, to determine their roles during the SpltNPV life cycle. RT-PCR analysis and Western blot analysis showed the target gene expression had been knocked out in the SpltNPV-infected SpLi-221 cells after treatment with Splt-p49 or Splt-iap4 double-stranded RNA (dsRNA), respectively, confirming that the two genes were effectively silenced. In SpltNPV-infected cells treated with Splt-p49 dsRNA, apoptosis was observed beginning at 14 h, and almost all cells had undergone apoptosis by 48 h. In contrast, budded virus production and polyhedra formation progressed normally in infected cells treated with Splt-iap4 dsRNA. Cell viability analysis showed that Splt-IAP4 had no synergistic effect on the inhibition of apoptosis of SpLi-221 cells induced by SpltNPV infection. Interestingly, after Splt-iap4 dsRNA treatment, cells did not congregate like those infected with SpltNPV in the early infection phase, implying an unknown role of baculovirus iap4. Our results determine that Splt-p49 is necessary to prevent apoptosis; however, Splt-iap4 has no antiapoptotic function during SpltNPV infection.


Author(s):  
R. Z. Mamoun ◽  
T. Astier-Gin ◽  
R. Kettmann ◽  
J. Deschamps ◽  
N. Rebeyrotte ◽  
...  

2008 ◽  
Vol 89 (3) ◽  
pp. 676-686 ◽  
Author(s):  
Kristi Tamm ◽  
Andres Merits ◽  
Inga Sarand

The cytotoxicity of Semliki Forest virus (SFV) infection is caused partly by the non-structural protein nsP2, an essential component of the SFV replicase complex. Due to the presence of a nuclear localization signal (NLS), nsP2 also localizes in the nucleus of infected cells. The present study analysed recombinant SFV replicons and genomes with various deletions or substitutions in the NLS, or with a proline-to-glycine mutation at position 718 of nsP2 (P718G). Deletion of one or two arginine residues from the NLS or substitution of two of the arginines with aspartic acid resulted in a virus with a temperature-sensitive phenotype, and substitution of all three arginines was lethal. Thus, most of the introduced mutations severely affected nsP2 functioning in viral replication; in addition, they inhibited the ability of SFV to induce translational shut-off and kill infected cells. SFV replicons with a P718G mutation or replacement of the NLS residues 648RRR650 with RDD were found to be the least cytotoxic. Corresponding replicons expressed non-structural proteins at normal levels, but had severely reduced genomic RNA synthesis and were virtually unable to replicate and transcribe co-electroporated helper RNA. The non-cytotoxic phenotype was maintained in SFV full-length genomes harbouring the corresponding mutations; however, during a single cycle of cell culture, these were converted to a cytotoxic phenotype, probably due to the accumulation of compensatory mutations.


Author(s):  
Arie Fridrich ◽  
Vengamanaidu Modepalli ◽  
Magda Lewandowska ◽  
Reuven Aharoni ◽  
Yehu Moran

AbstractmicroRNAs (miRNAs), base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this glaring phylogenetic gap, we characterized the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ∼600 million years. Using genetic manipulation, Argonaute-immunoprecipitations and high-throughput sequencing we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.


2009 ◽  
Vol 90 (3) ◽  
pp. 614-625 ◽  
Author(s):  
Joanne L. Tan ◽  
Norihito Ueda ◽  
Andrew A. Mercer ◽  
Stephen B. Fleming

Orf virus (ORFV) is the type species of the genus Parapoxvirus, but little is known about the structure or morphogenesis of the virus. In contrast, the structure and morphogenesis of vaccinia virus (VACV) has been extensively studied. VACV has two main infectious forms, mature virion (MV) and extracellular virion (EV). The MV is wrapped by two additional membranes derived from the trans-Golgi to produce a wrapped virion (WV), the outermost of which is lost by cellular membrane fusion during viral egress to form the EV. Genome sequencing of ORFV has revealed that it has homologues of almost all of the VACV structural genes. Notable exceptions are A36R, K2L, A56R and B5R, which are associated with WV and EV envelopes. This study investigated the morphogenesis and structure of ORFV by fusing FLAG peptide to the structural proteins 10 kDa, F1L and ORF-110 to form recombinant viruses. 10 kDa and F1L are homologues of VACV A27L and H3L MV membrane proteins, whilst ORF-110 is homologous to VACV A34R, an EV membrane protein. Immunogold labelling of FLAG proteins on virus particles isolated from lysed cells showed that FLAG–F1L and FLAG–10 kDa were displayed on the surface of infectious particles, whereas ORF-110–FLAG could not be detected. Western blot analysis of solubilized recombinant ORF-110–FLAG particles revealed that ORF-110–FLAG was abundant and undergoes post-translational modification indicative of endoplasmic reticulum trafficking. Fluorescent microscopy confirmed the prediction that ORF-110–FLAG localized to the Golgi in virus-infected cells. Finally, immunogold labelling of EVs showed that ORF-110–FLAG became exposed on the surface of EV-like particles as a result of egress from the cell.


Sign in / Sign up

Export Citation Format

Share Document