host cell apoptosis
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Yasmin Gabay

<p>The ability of corals to form novel partnerships with symbionts that may be better suited to new environmental conditions is an important factor when assessing the ability for corals to adapt to climate change. However, relatively little attention has been given to the effects of hosting different symbiont types on holobiont physiology, competitive interactions between these symbionts, or the capacity of the host to regulate populations of different symbionts. Such factors likely play an important role in patterns of host-symbiont specificity and flexibility, and hence the potential for corals to respond to climate change. The aim of this research was to characterise the cellular and physiological events associated with hosting different symbiont species in Exaiptasia pallida (commonly referred to as ‘Aiptasia’), a model cnidarian-dinoflagellate symbiosis, and how these events might contribute to host-symbiont specificity. The specific objectives were to: (1) determine the effect of symbiont species on the population dynamics of host colonisation and holobiont physiology; (2) measure the competitiveness of the homologous symbiont versus heterologous symbionts, under both control and elevated temperatures; and quantify the ability of the host to regulate its symbiont population in response to homologous versus heterologous symbiont taxa (3) via host-cell apoptosis and (4) via symbiont cell cycle regulation.  To explore this, aposymbiotic (i.e. symbiont-free) individuals of Aiptasia were first inoculated with one of five Symbiodinium taxa (the homologous S. minutum or heterologous S. microadriaticum, phylotype C3, S. trenchii or S. voratum), and the rates and patterns of colonisation assessed. Proliferation success inside the anemone was different between symbionts, with the homologous S. minutum being the most successful species, while Symbiodinium C3 and S. voratum struggled or failed to form a long-lasting symbiosis. The spatial pattern of symbiont colonisation was identical for all the successful Symbiodinium taxa, however the timing differed between these different symbionts. Symbiont identity also had an effect on holobiont fitness, as S. microadriaticum and S. trenchii were less beneficial to the host compared to S. minutum, as indicated by lower rates of photosynthesis, anemone growth and pedal laceration (i.e. asexual reproduction). The taxon-specific differences demonstrated here provided a basis for the subsequent thesis chapters, leading to questions about how the different symbionts might compete with one another and be regulated by the host.  The competitiveness of the homologous symbiont relative to heterologous ones, and hence the ability of the host to ‘switch’ and ‘shuffle’ its symbiont population, was tested by inoculating aposymbiotic sea anemones either with simultaneous or sequential mixtures of thermally tolerant and sensitive Symbiodinium and exposing them to control versus elevated temperatures. The homologous species was dominant regardless of temperature, outcompeting the heterologous, thermally tolerant S. microadriaticum and S. trenchii. This result indicates that the high level of specificity seen between Aiptasia and S. minutum in the Pacific Ocean may result, in part, from a reluctance to form new symbioses, even if such associations have the potential to confer a degree of thermal tolerance that may be beneficial under future climate change.  The differential success of the different symbionts was also reflected in the host’s apoptotic response to their presence in its tissues, as measured via caspase-3 activity. In particular, anemones hosting S. minutum and S. microadriaticum exhibited lower levels of caspase activity than those hosting S. trenchii and S. voratum throughout symbiosis establishment, consistent with symbiont proliferation success. The general pattern of caspase activity during the 28-days colonisation period was similar, however, with induction of caspase-3 activity upon inoculation, followed by a marked decline in activity over the subsequent week, and then an increase (either moderate or marked depending upon symbiont identity) across the remainder of the colonisation period measured. Host cell apoptosis therefore likely plays an important role in determining the compatibility and fate of different Symbiodinium taxa in a host, and the potential for establishing novel symbioses.  In contrast to the apparent importance of host apoptosis, symbiont cell cycle control did not seem to play an important role in determining the different rates of symbiont colonisation observed. Flow cytometry was used to determine the relative proportion of cells in the different phases of the cell cycle (i.e. G1, G2, S, M), with all symbiont taxa exhibiting the same pattern of cell cycle progression. In particular, more cells were in the S and G2/M phases combined than in G1 during the first two weeks of colonisation, but this changed as colonisation progressed, when a greater proportion cells were in the G1 phase. This indicates that symbiont cell division becomes limited in the later stages of colonisation as symbiont density increases, consistent with increasing resource limitation.  This thesis provides valuable insights into the regulation of the cnidarian-dinoflagellate symbiosis, and the events that contribute to host-symbiont specificity. In particular, it suggests that through cellular control and physiological impacts on the host (and hence the overall symbiosis), there is likely limited potential to establish new host-symbiont partnerships that allow for adaptation to our warming climate. The next step is now to further elucidate the relative importance of post-phagocytosis control mechanisms, and to test the generality of my findings by extending them from the model Aiptasia system to reef corals.</p>


2021 ◽  
Author(s):  
◽  
Yasmin Gabay

<p>The ability of corals to form novel partnerships with symbionts that may be better suited to new environmental conditions is an important factor when assessing the ability for corals to adapt to climate change. However, relatively little attention has been given to the effects of hosting different symbiont types on holobiont physiology, competitive interactions between these symbionts, or the capacity of the host to regulate populations of different symbionts. Such factors likely play an important role in patterns of host-symbiont specificity and flexibility, and hence the potential for corals to respond to climate change. The aim of this research was to characterise the cellular and physiological events associated with hosting different symbiont species in Exaiptasia pallida (commonly referred to as ‘Aiptasia’), a model cnidarian-dinoflagellate symbiosis, and how these events might contribute to host-symbiont specificity. The specific objectives were to: (1) determine the effect of symbiont species on the population dynamics of host colonisation and holobiont physiology; (2) measure the competitiveness of the homologous symbiont versus heterologous symbionts, under both control and elevated temperatures; and quantify the ability of the host to regulate its symbiont population in response to homologous versus heterologous symbiont taxa (3) via host-cell apoptosis and (4) via symbiont cell cycle regulation.  To explore this, aposymbiotic (i.e. symbiont-free) individuals of Aiptasia were first inoculated with one of five Symbiodinium taxa (the homologous S. minutum or heterologous S. microadriaticum, phylotype C3, S. trenchii or S. voratum), and the rates and patterns of colonisation assessed. Proliferation success inside the anemone was different between symbionts, with the homologous S. minutum being the most successful species, while Symbiodinium C3 and S. voratum struggled or failed to form a long-lasting symbiosis. The spatial pattern of symbiont colonisation was identical for all the successful Symbiodinium taxa, however the timing differed between these different symbionts. Symbiont identity also had an effect on holobiont fitness, as S. microadriaticum and S. trenchii were less beneficial to the host compared to S. minutum, as indicated by lower rates of photosynthesis, anemone growth and pedal laceration (i.e. asexual reproduction). The taxon-specific differences demonstrated here provided a basis for the subsequent thesis chapters, leading to questions about how the different symbionts might compete with one another and be regulated by the host.  The competitiveness of the homologous symbiont relative to heterologous ones, and hence the ability of the host to ‘switch’ and ‘shuffle’ its symbiont population, was tested by inoculating aposymbiotic sea anemones either with simultaneous or sequential mixtures of thermally tolerant and sensitive Symbiodinium and exposing them to control versus elevated temperatures. The homologous species was dominant regardless of temperature, outcompeting the heterologous, thermally tolerant S. microadriaticum and S. trenchii. This result indicates that the high level of specificity seen between Aiptasia and S. minutum in the Pacific Ocean may result, in part, from a reluctance to form new symbioses, even if such associations have the potential to confer a degree of thermal tolerance that may be beneficial under future climate change.  The differential success of the different symbionts was also reflected in the host’s apoptotic response to their presence in its tissues, as measured via caspase-3 activity. In particular, anemones hosting S. minutum and S. microadriaticum exhibited lower levels of caspase activity than those hosting S. trenchii and S. voratum throughout symbiosis establishment, consistent with symbiont proliferation success. The general pattern of caspase activity during the 28-days colonisation period was similar, however, with induction of caspase-3 activity upon inoculation, followed by a marked decline in activity over the subsequent week, and then an increase (either moderate or marked depending upon symbiont identity) across the remainder of the colonisation period measured. Host cell apoptosis therefore likely plays an important role in determining the compatibility and fate of different Symbiodinium taxa in a host, and the potential for establishing novel symbioses.  In contrast to the apparent importance of host apoptosis, symbiont cell cycle control did not seem to play an important role in determining the different rates of symbiont colonisation observed. Flow cytometry was used to determine the relative proportion of cells in the different phases of the cell cycle (i.e. G1, G2, S, M), with all symbiont taxa exhibiting the same pattern of cell cycle progression. In particular, more cells were in the S and G2/M phases combined than in G1 during the first two weeks of colonisation, but this changed as colonisation progressed, when a greater proportion cells were in the G1 phase. This indicates that symbiont cell division becomes limited in the later stages of colonisation as symbiont density increases, consistent with increasing resource limitation.  This thesis provides valuable insights into the regulation of the cnidarian-dinoflagellate symbiosis, and the events that contribute to host-symbiont specificity. In particular, it suggests that through cellular control and physiological impacts on the host (and hence the overall symbiosis), there is likely limited potential to establish new host-symbiont partnerships that allow for adaptation to our warming climate. The next step is now to further elucidate the relative importance of post-phagocytosis control mechanisms, and to test the generality of my findings by extending them from the model Aiptasia system to reef corals.</p>


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1374
Author(s):  
Chathura D. Suraweera ◽  
Mark G. Hinds ◽  
Marc Kvansakul

Numerous viruses have evolved sophisticated countermeasures to hijack the early programmed cell death of host cells in response to infection, including the use of proteins homologous in sequence or structure to Bcl-2. Orf virus, a member of the parapoxviridae, encodes for the Bcl-2 homolog ORFV125, a potent inhibitor of Bcl-2-mediated apoptosis in the host. ORFV125 acts by directly engaging host proapoptotic Bcl-2 proteins including Bak and Bax as well as the BH3-only proteins Hrk and Puma. Here, we determined the crystal structures of ORFV125 bound to the BH3 motif of proapoptotic proteins Puma and Hrk. The structures reveal that ORFV125 engages proapoptotic BH3 motif peptides using the canonical ligand binding groove. An Arg located in the structurally equivalent BH1 region of ORFV125 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for Orf virus-mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pu Wang ◽  
Yukun Jia ◽  
Yue Han ◽  
Weirong Wang ◽  
Yiran Zhu ◽  
...  

Eimeria acervulina (E. acervulina) causes coccidiosis in poultry which persists as economic pain worldwide. Most damage to the intestinal mucosa results from apoptosis of the infected intestinal epithelial cells. The Microneme protein 3 (MIC3) protein is a key virulence factor in some parasites involved in host cell apoptosis inhibition. Here, we studied whether and how MIC3 affects the apoptosis in E. acervulina infected chicken duodenal epithelial cells. Through flow cytometry (FCM), we found that the presence of merozoites and the overexpression of MIC3 significantly decreased apoptosis and the activity of caspase-3 in chicken duodenal epithelial cells at 4, 6, and 8 h post merozoite infection (P &lt; 0.01). Silencing the Casitas B-lineage lymphoma (CBL) protein, a host receptor for MIC3 with shRNA was shown to promote apoptosis in the chicken duodenal epithelial cells. The early apoptotic rate of host cells in the lentiviral-MIC3 group was significantly lower than that in the lentiviral-MIC3 + shRNA CBL group at 4 h after MIC3 expression (P &lt; 0.01), and it was moderately decreased in the lentiviral-MIC3 + shRNA CBL group compared with that in the shRNA CBL group. Our data indicated that MIC3 inhibited early apoptosis of E. acervulina infected chicken duodenal epithelial cells by targeting host receptor-CBL protein. These findings unveiled one of the mechanisms of how intracellular parasites affect the apoptosis of infected host cells, which provided a deeper understanding of their pathogenesis.


Author(s):  
Ting Tang ◽  
Haiying Wu ◽  
Xi Chen ◽  
Li Chen ◽  
Luyao Liu ◽  
...  

Chlamydia psittaci is an important zoonotic factor associated with human and animal atypical pneumonia. Resisting host cell apoptosis is central to sustaining Chlamydia infection in vivo. Chlamydia can secrete inclusion membrane proteins (Incs) that play important roles in their development cycle and pathogenesis. CPSIT_0846 is an Inc protein in C. psittaci identified by our team in previous work. In the current study, we investigated the regulatory role of CPSIT_0846 in HeLa cell apoptosis, and explored potential mechanisms. The results showed that HeLa cells treated with CPSIT_0846 contained fewer apoptotic bodies and exhibited a lower apoptotic rate than untreated cells either with Hoechst 33258 fluorescence staining or flow cytometry with or without induction by staurosporine (STS). CPSIT_0846 could increase the phosphorylation of the extracellular signal-regulated kinases 1/2 (ERK1/2) or stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) signaling pathways, and the Bcl-2 associated X protein (Bax)/B cell lymphoma 2 (Bcl-2) ratio, levels of cleaved caspase-3/9 and cleaved Poly-ADP-ribose polymerase (PARP) were significantly up-regulated following inhibition of ERK1/2 or SAPK/JNK pathways with U0126 or SP600125. After carbonyl cyanide 3-chlorophenylhydrazone (CCCP) treatment, the mitochondrial membrane potential (MMP) of cells was significantly decreased in control group, but stable in the CPSIT_0846 treated one, and less cytochrome c (Cyt.c) was released into the cytoplasm. Inhibition of the ERK1/2 or SAPK/JNK pathway significantly decreased the JC-1 red-green fluorescence signal, and promoted Cyt.c discharge into the cytoplasm in HeLa cells treated with CPSIT_0846. In conclusion, CPSIT_0846 can regulate mitochondrial pathway-mediated apoptosis in HeLa cells by activating the ERK/JNK signaling pathway.


2021 ◽  
Author(s):  
Yong-Liang Lou ◽  
Dan-Li Xie ◽  
Xian-Hui Huang ◽  
Meng-Meng Zheng ◽  
Ting Zhang ◽  
...  

Abstract BackgroundVibrio vulnificus (V. vulnificus) is a gram-negative opportunistic pathogen that causes lethal infections in humans. Vibrio vulnificus hemolysin (VVH) is a key virulence factor that exhibits strong hemolytic and cytolytic activities and contributes to the pathogen's invasion, vasodilatation, and septic shock. Most of the studies so far have focused on VVH's cytolytic activity against cell lines derived from host cells. However, the cytolytic activity of VVH on primary macrophages is still unclear. In addition, although it is known that VVH induces host cell apoptosis via triggering ROS production, the impact of VVH on host immune response has not been fully understood. This study aimed to investigate the role of VVH-induced TNF-α expression and ROS production in the absence of apoptosis of murine primary macrophages and related signaling pathways using FACS, DCFH-DA, real-time PCR, and western blotting. ResultsThe results showed that murine primary macrophages from different organs displayed differential sensitivities towards VVH-induced cell death. Liver Kupffer cells, splenic macrophages, and BMMfs were more sensitive to VVH-induced cytotoxicity, while alveolar macrophages, lung interstitial macrophages, and lung neutrophils were resistant to VVH-induced cell death. Besides, we found that a low dose of VVH, which did not induce apoptosis in murine primary macrophages, could induce apoptosis independent TNF-α expression and ROS generation. Such ROS production in macrophages could be further blocked by inhibiting p38-MAPKs or NFκB activation but was not affected by knockout of TNF-α. ConclusionsVVH produced cytotoxicity in macrophages, an apoptosis-independent TNF-α expression, and ROS production, which provides insight into the mechanism underlying the crosstalk between VVH-induced inflammation and oxidative stress.


Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chathura D. Suraweera ◽  
Mark G. Hinds ◽  
Marc Kvansakul

Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.


Sign in / Sign up

Export Citation Format

Share Document