Microstructure of trona sorbents from fossil fuel plant full-scale dry injection tests

Author(s):  
R. T. Greer ◽  
D. T. Zhang

The use of dry sorbents for the removal of SO2 from the flue gas of coal-fired power plants is of interest in reducing the complexity of SO2 removal and appears to offer economic incentives. In 1982, the Electric Power Research Institute, Public Service company of Colorado (PSCCO), and Multi-Mineral Corporation co-sponsored a full-scale demonstration of the dry injection process at the Cameo Station, Unit 1, of PSCCO near Grand Junction, Colorado.Laboratory comparative studies of nahcolite (NaHCO3), trona and soda ash Na2CO3) with that exposed to gas streams of air or of SO2 at elevated temperatures have been reported to provide microstructural data (from SEM) for correlation with microchemical information and phase identification for possible reactions of these materials which may occur under conditions for injection of a dry sorbent at the utility plant, and which may bear on the effectiveness of SO2 reaction with sorbents.

2013 ◽  
Vol 39 (6) ◽  
pp. 515-534 ◽  
Author(s):  
Chuanwen Zhao ◽  
Xiaoping Chen ◽  
Edward J. Anthony ◽  
Xi Jiang ◽  
Lunbo Duan ◽  
...  

Author(s):  
Jian Ma ◽  
Oliver Hemmers

A thermoeconomic analysis of microalgae co-firing process for fossil fuel-fired power plants is studied. A process with closed photobioreactor and artificial illumination is evaluated for microalgae cultivation, due to its simplicity with less influence from climate variations. The results from this process would contribute to further estimation of process performance and investment. The concept of co-firing (coal-microalgae or natural gas-microalgae) includes the utilization of CO2 from power plant for microalgal biomass culture and oxy-combustion of using oxygen generated by biomass to enhance the combustion efficiency. As it reduces CO2 emission by recycling it and uses less fossil fuel, there are concomitant benefits of reduced GHG emissions. The by-products (oxygen) of microalgal biomass can be mixed with air or recycled flue gas prior to combustion, which will have the benefits of lower nitrogen oxide concentration in flue gas, higher efficiency of combustion, and not too high temperature (avoided by available construction materials) resulting from coal combustion in pure oxygen. Two case studies show that there are average savings about $0.386 million/MW/yr and $0.323 million/MW/yr for coal-fired and natural gas-fired power plants, respectively. These costs saving are economically attractive and demonstrate the promise of microalgae technology for reducing greenhouse gas (GHG) emission.


Author(s):  
Neelesh S. Bhopatkar ◽  
Heng Ban ◽  
Thomas K. Gale

This study is a part of a comprehensive investigation, to conduct bench-, pilot-, and full-scale experiments and theoretical studies to elucidate the fundamental mechanisms associated with mercury oxidation and capture in coal-fired power plants. The objective was to quantitatively describe the mechanisms governing adsorption, desorption, and oxidation of mercury in coal-fired flue gas carbon, and establish reaction-rate constants based on experimental data. A chemical-kinetic model was developed which consists of homogeneous mercury oxidation reactions as well as heterogeneous mercury adsorption reactions on carbon surfaces. The homogeneous mercury oxidation mechanism has eight reactions for mercury oxidation. The homogeneous mercury oxidation mechanism quantitatively predicts the extent of mercury oxidation for some of datasets obtained from synthetic flue gases. However, the homogeneous mechanism alone consistently under predicts the extent of mercury oxidation in full scale and pilot scale units containing actual flue gas. Heterogeneous reaction mechanisms describe how unburned carbon or activated carbon can effectively remove mercury by adsorbing hydrochloric acid (HCI) to form chlorinated carbon sites, releasing the hydrogen. The elemental mercury may react with chlorinated carbon sites to form sorbed HgCl. Thus mercury is removed from the gas-phase and stays adsorbed on the carbon surface. Predictions using this model have very good agreement with experimental results.


2019 ◽  
Author(s):  
Alex James ◽  
Jake Reynolds ◽  
Dan Reed ◽  
Peter Styring ◽  
Robert Dawson

<div> <p>Functionalised hypercrosslinked polymers (HCPs) with surface areas between 213 – 1124 m<sup>2</sup>/g based on a range of monomers containing different chemical moieties are evaluated for CO<sub>2</sub> capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO<sub>2</sub> uptake reaching maximum uptakes in under 60 seconds. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO<sub>2</sub> stream (> 20 %) into a concentrated stream (> 85 %) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease by which readily synthesised functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO<sub>2</sub> from N<sub>2</sub> from industrially applicable simulated gas streams under more realistic conditions.</p> </div> <br>


Author(s):  
Alex James ◽  
Jake Reynolds ◽  
Dan Reed ◽  
Peter Styring ◽  
Robert Dawson

<div> <p>Functionalised hypercrosslinked polymers (HCPs) with surface areas between 213 – 1124 m<sup>2</sup>/g based on a range of monomers containing different chemical moieties are evaluated for CO<sub>2</sub> capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO<sub>2</sub> uptake reaching maximum uptakes in under 60 seconds. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO<sub>2</sub> stream (> 20 %) into a concentrated stream (> 85 %) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease by which readily synthesised functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO<sub>2</sub> from N<sub>2</sub> from industrially applicable simulated gas streams under more realistic conditions.</p> </div> <br>


2021 ◽  
Author(s):  
Candy Hernandez ◽  
Vincent McDonell ◽  
Jacob Delimont ◽  
Gareth Oskam ◽  
Michael Ramotowski

Abstract In anticipation of increased use of hydrogen as a means of decarbonizing future power generation used widely in combined heat and power plants, studies are underway to understand how hydrogen impacts operability and emissions from existing low emission gas turbines. In the current study, a full-scale annular combustor is used to study how added hydrogen to methane (as a proxy for natural gas) impacts lean blow-off limits. Of particular interest is understanding if hydrogen can be used strategically to extend low emissions operation at lower load. This would facilitate use of gas turbines to offset intermittent renewable power which is becoming increasing integrated into microgrid environments where combined heat and power system are prevalent. A combined experimental and numerical approach is taken. Tests were carried out at Southwest Research Institute using a full-scale annular combustor test rig at elevated temperatures and atmospheric pressure. The individual fuel injectors used were piloted injectors based on natural gas injectors used in practice. Various blends of hydrogen and methane were tested for different scaled load conditions and different pilot to main fuel splits. Besides identifying the overall equivalence ratio at blow-off, measurements also included temperature uniformity at the exit plane and imaging of the reaction. To complement and extend the study a chemical reactor network approach was also applied. The reactor network was initially validated on a prior study involving use of a piloted model combustor. The reactor network was applied to the current configuration and further tuned to align with the measured data. The agreement between the reactor network blow-off and measured blow-off was reasonable. The validated reactor network was then used in combination with a statistically designed simulation matrix to derive a design tool. The tool is then used to estimate other performance features including CO emissions near LBO and the impacts of ambient humidity and the presence of higher hydrocarbons typically found in natural gas. The design tool quantifies the extent to which hydrogen content and pilot percentage can extended part load operability for the full annular combustor system.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Jian Ma ◽  
Oliver Hemmers

The concept of cofiring (algal biomass burned together with coal or natural gas in existing utility power boilers) includes the utilization of CO2 from power plant for algal biomass culture and oxycombustion of using oxygen generated by biomass to enhance the combustion efficiency. As it reduces CO2 emission by recycling it and uses less fossil fuel, there are concomitant benefits of reduced greenhouse gas (GHG) emissions. The by-products (oxygen) of microalgal biomass can be mixed with air or recycled flue gas prior to combustion, which will have the benefits of lower nitrogen oxide concentration in flue gas, higher efficiency of combustion, and not too high temperature (avoided by available construction materials) resulting from coal combustion in pure oxygen. A technoeconomic analysis of microalgae cofiring process for fossil fuel-fired power plants is studied. A process with closed photobioreactor and artificial illumination is evaluated for microalgae cultivation, due to its simplicity with less influence from climate variations. The results from this process would contribute to further estimation of process performance and investment. Two case studies show that there are average savings about $0.264 million/MW/yr and $0.203 million/MW/yr for coal-fired and natural gas-fired power plants, respectively. These cost savings are economically attractive and demonstrate the promise of microalgae technology for reducing GHG emission from fossil fuel-fired power plants.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1605
Author(s):  
Alex M. James ◽  
Jake Reynolds ◽  
Daniel G. Reed ◽  
Peter Styring ◽  
Robert Dawson

Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document