Exploring Use of Hydrogen for Extending Operability of a Full-Scale Annular Combustor

2021 ◽  
Author(s):  
Candy Hernandez ◽  
Vincent McDonell ◽  
Jacob Delimont ◽  
Gareth Oskam ◽  
Michael Ramotowski

Abstract In anticipation of increased use of hydrogen as a means of decarbonizing future power generation used widely in combined heat and power plants, studies are underway to understand how hydrogen impacts operability and emissions from existing low emission gas turbines. In the current study, a full-scale annular combustor is used to study how added hydrogen to methane (as a proxy for natural gas) impacts lean blow-off limits. Of particular interest is understanding if hydrogen can be used strategically to extend low emissions operation at lower load. This would facilitate use of gas turbines to offset intermittent renewable power which is becoming increasing integrated into microgrid environments where combined heat and power system are prevalent. A combined experimental and numerical approach is taken. Tests were carried out at Southwest Research Institute using a full-scale annular combustor test rig at elevated temperatures and atmospheric pressure. The individual fuel injectors used were piloted injectors based on natural gas injectors used in practice. Various blends of hydrogen and methane were tested for different scaled load conditions and different pilot to main fuel splits. Besides identifying the overall equivalence ratio at blow-off, measurements also included temperature uniformity at the exit plane and imaging of the reaction. To complement and extend the study a chemical reactor network approach was also applied. The reactor network was initially validated on a prior study involving use of a piloted model combustor. The reactor network was applied to the current configuration and further tuned to align with the measured data. The agreement between the reactor network blow-off and measured blow-off was reasonable. The validated reactor network was then used in combination with a statistically designed simulation matrix to derive a design tool. The tool is then used to estimate other performance features including CO emissions near LBO and the impacts of ambient humidity and the presence of higher hydrocarbons typically found in natural gas. The design tool quantifies the extent to which hydrogen content and pilot percentage can extended part load operability for the full annular combustor system.

Author(s):  
Juan Pablo Gutierrez ◽  
Terry B. Sullivan ◽  
Gerald J. Feller

The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated Gasification Combined Cycle (IGCC) plants. The system uses a low heating value fuel such as coal or biomass that is gasified to produce a mixture of hydrogen and carbon monoxide. The potential for efficiency improvement and the decrease in emissions resulting from this process compared to coal-fired power plants are strong evidence to the argument that IGCC technology will be a key player in the future of power generation. In addition to new IGCC plants, and as a result of new emissions regulations, industry is looking at possibilities for retrofitting existing natural gas plants. This paper studies the feasibility of retrofitting existing gas turbines of Natural Gas Combined Cycle (NGCC) power plants to burn syngas, with a focus on the water/steam cycle design limitations and necessary changes. It shows how the gasification island processes can be treated independently and then integrated with the power block to make retrofitting possible. This paper provides a starting point to incorporate the gasification technology to current natural gas plants with minor redesigns.


Author(s):  
Candy Hernandez ◽  
Vincent McDonell

Abstract Lean-premixed (LPM) gas turbines have been developed for stationary power generation in efforts to reduce emissions due to strict air quality standards. Lean-premixed operation is beneficial as it reduces combustor temperatures, thus decreasing NOx formation and unburned hydrocarbons. However, tradeoffs occur between system performance and turbine emissions. Efforts to minimize tradeoffs between stability and emissions include the addition of hydrogen to natural gas, a common fuel used in stationary gas turbines. The addition of hydrogen is promising for both increasing combustor stability and further reducing emissions because of its wide flammability limits allowing for lower temperature operation, and lack of carbon molecules. Other efforts to increase gas turbine stability include the usage of a non-lean pilot flame to assist in stabilizing the main flame. By varying fuel composition for both the main and piloted flows of a gas turbine combustor, the effect of hydrogen addition on performance and emissions can be systematically evaluated. In the present work, computational fluid dynamics (CFD) and chemical reactor networks (CRN) are created to evaluate stability (LBO) and emissions of a gas turbine combustor by utilizing fuel and flow rate conditions from former hydrogen and natural gas experimental results. With CFD and CRN analysis, the optimization of parameters between fuel composition and main/pilot flow splits can provide feedback for minimizing pollutants while increasing stability limits. The results from both the gas turbine model and former experimental results can guide future gas turbine operation and design.


Author(s):  
Parker Wells ◽  
Karthik Nithyanandam ◽  
Richard Wirz

As variable generation electricity sources, namely wind and solar, increase market penetration, the variability in the value of electricity by time of day has increased dramatically. In response to increase in electricity demand, natural gas “peaker plants” are being added to the grid, and the need for spinning and nonspinning reserves have increased. Many natural gas, and other heat source based, power plants exist as combined heat and power (CHP), or cogeneration, plants. When built for industrial use, these plants are sized and run based on heat needs of an industrial facility, and are not optimized for the value of electricity generated. With the inclusion of new, less expensive thermal energy storage (TES) systems, the heating and electricity usage can be separated and the system can be optimized separately. The use of thermal energy storage with CHP improves system economics by improving efficiency, reducing upfront capital expenditures, and reducing system wear. This paper examines the addition of thermal energy storage to industrial natural gas combined heat and power (CHP) plants. Here a case study is presented for a recycled paper mill near Los Angeles, CA. By implementing thermal energy storage, the mill could decouple electric and heat production. The mill could take advantage of time-of-day pricing while producing the constant heat required for paper processing. This paper focuses on plant economics in 2012 and 2015, and suggests that topping cycle industrial CHP plants could benefit from the addition of high temperature (400–550°C) energy storage. Even without accounting for the California incentives associated with implementing advanced energy storage technologies and distributed generation, the addition of energy storage to CHP plants can drastically reduce the payback period below the 25 year expected economic lifetime of a plant. Thus thermal energy storage can make more CHP plants economically viable to build.


Author(s):  
Harry Miller ◽  
Anders T. Johnson ◽  
Markus Ahrens ◽  
T. Kenton Flanery

A team forms to address the challenge of low cost, low maintenance gas compression that can be quickly ramped up to meet peak demands. The Natural Gas Industry recognizes the importance of efficient, flexible compression equipment for the transmission of gas. In the early 1900s the Gas Industry met its compression objectives with many small reciprocating compressor units. As competition increased, Gas Companies began employing more cost effective larger units 3.7 MW (5,000 bhp) and eventually gas turbines 11+ MW (15,000+ bhp) became the prime mover of choice. While gas fired engine driven compressors are convenient for gas companies; they are becoming increasingly difficult to install. Environmental restrictions have tightened making permitting difficult. The larger gas turbine units seemed a solution because they were the low capital cost prime mover and clean burning. However, gas turbines have not yet achieved the high degree of flexibility and fuel efficiency gas transporters hoped. Flexibility has become an increasingly important issue because of the new “Peaking Power Plants” that are coming online. Gas companies are trying to solve the problem of low cost, low maintenance compression that can be quickly ramped up to meet peak demands. The idea of using electric motors to drive compressors to minimize the environmental, regulatory, and maintenance issues is not new. The idea of installing an electrically powered, highly flexible, efficient, low maintenance compressor unit directly into the pipeline feeding the load, possibly underground where it won’t be seen or heard, is a new and viable way for the gas and electric industries to do business together. This paper examines the application of totally enclosed, variable speed electric motor driven gas compressors to applications requiring completely automated, low maintenance, quick response gas pressure boosters. In this paper we will describe how a natural gas transporter, compressor manufacturer, motor manufacturer, and power company have teamed up to design the world’s first gas compressor that can be installed directly in the pipeline. We will discuss methodologies for installing the proposed compressor, the environmental benefits — no emissions, a small footprint, minimal noise — and the benefit of being able to install compression exactly where it is needed to meet the peaking requirements of today’s new loads.


Author(s):  
James DiCampli

Combined heat and power (CHP), is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, Aeroderivative gas turbines will be a major part of global CHP growth, particularly in China. In order to improve energy efficiency and reduce CO2 emissions, China is working to build ∼1000 new plants of Natural Gas Distributed Energy System (NG-DES) in the next five years. These plants will replace conventional coal-fired plants with combined cooling, heating and power (CCHP) systems. China power segments require an extensive steam supply for cooling, heating and industrial process steam demands, as well as higher peak loads due to high population densities and manufacturing growth rates. GE Energy Aero recently entered the CCHP segment in China, and supported the promotion of codes and standards for NG-DES policy, and is developing optimized CCHP gas turbine packages to meet requirements. This paper reviews those policies and requirements, and presents technical case studies on CCHP applications. Appendix B highlights China’s draft “Guidance Opinions on Developing Natural-Gas Distributed Energy.”


Author(s):  
Ranjith Malapaty ◽  
Suresh M. V. J. J.

The world is facing complex and mounting environmental challenges. Increased fuel costs and increased market capacity in power generation markets is driving a transformation in power plant operations. Power plants are seeking ways to maximize revenue potential during peak conditions and minimize operational costs during off-peak conditions. Although proven natural gas reserves have increased globally by nearly 50% over the last 20 years, much of this growth has been focused in select regions and countries. In parallel to the discovery of new reserves is the increase in power demand across the globe. However, there are many regions of the globe in which power demand is not being matched by increased local supplies of natural gas, or in infrastructure required to supply natural gas to power generation assets. Given these drivers, there is growing global interest in LNG & alternate fuels. This phenomenon is driving a trend to explore the potential of using LNG fuels which can be easily transported across the globe as an alternative for power generation. In a carbon-constrained environment, the technology trend is for combustion systems capable of burning LNG fuel in combination with delivering the required operability. This paper will focus on developments in GE’s heavy duty gas turbines that enable operation on fuels with varying properties, providing fuel flexibility for sustainable power generation and better emissions compliance. GE’s turbine control system employs physics-based models of gas turbine operability boundaries (e.g., emissions, combustion dynamics, etc.), to continuously estimate current boundary levels and make adjustments as required.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


Sign in / Sign up

Export Citation Format

Share Document