Endocytosis and the lysosomal apparatus of rat Leydig cells

Author(s):  
M.F. Lalli ◽  
L. Hermo ◽  
Y. Clermont

The Leydig cells of the rat testis which are involved in testosterone production contain an abundance of smooth endoplasmic reticulum and mitochondria (Figs. 2,6). These cells also possess many peroxisomes, lysosomes and multivesicular bodies (MVB's). On the cell surface, the plasma membrane contains numerous short microvilli, small invaginations and large plasmalemmal folds which appear to engulf extracellular fluid. There are also many large dilated vacuoles adjacent to the cell surface. The purpose of the present study is to determine if these cells show endocytic activity and to differentiate by various cytochemical means lysosomal elements from peroxisomes.To identify lysosomes, tissue chopper sections of 2% glutaraldehyde-fixed testes (containing 2.5% dextran) were incubated in media containing thiamine monophosphate as a substrate (Lalli, 1983) to demonstrate the presence of acid phosphatase or in media containing P-nitrocatechol sulfate for the demonstration of arylsulfatase (Hopsu-Havu et al., 1967).

1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


Author(s):  
M. F. Lalli ◽  
V. Lacroix ◽  
L. Hermo ◽  
Y. Clermont ◽  
C. E. Smith

The testosterone-secreting Leydig cells contain an abundance of smooth endoplasmic reticulum, peroxisomes, mitochondria as well as a large, spheroidal, juxtanuclear Golgi apparatus composed of interconnected stacks of saccules (Figs. 1,2). Each Golgi stack appears to be composed of between 5 to 7 saccules or sacculo-tubular elements (Figs.1,2). These cells also possess pale and dense multivesicular bodies and dense membrane-bound bodies identified assecondary lysosomes, all of which have been shown to be involved in fluid phase and adsorptive endocytosis as well as in receptor mediated endocytosis. The purpose of the present study was to characterize the reactivity of Golgi saccules, multivesicular bodies and lysosomes of Leydig cells for different phosphatases.


1966 ◽  
Vol 30 (3) ◽  
pp. 623-643 ◽  
Author(s):  
R. M. Hicks

The superficial squamous cells of rat transitional epithelium are limited, on their luminal face, by an asymmetrically thickened membrane. Patches of similar thick membrane are found in the walls of the Golgi cisternae and it is suggested that the Golgi system is the site of assembly of the thick plasma membrane. This implies membrane flow from the Golgi apparatus to the cell surface, and there is indirect evidence that the membrane is transported in the form of fusiform vacuoles, derived from the Golgi cisternae, which fuse with, and become part of, the free cell membrane. Uptake of injected Imferon shows that similar, large, thick-walled vacuoles may be formed by invagination of the free cell surface. Some of these vacuoles are subsequently transformed into multivesicular bodies and autophagic vacuoles. The formation of other large heterogeneous bodies is described, and some of these are shown to have acid phosphatase activity.


Author(s):  
R.T.F. Bernard ◽  
R.H.M. Cross

Smooth endoplasmic reticulum (SER) is involved in the biosynthesis of steroid hormones, and changes in the organisation and abundance of this organelle are regularly used as indicators of changes in the level of steroidogenesis. SER is typically arranged as a meshwork of anastomosing tubules which, with the transmission electron microscope, appear as a random mixture of cross, oblique and longitudinal sections. Less commonly the SER appears as swollen vesicles and it is generally suggested that this is an artefact caused during immersion fixation or during immersion of poorly-perfused tissue.During a previous study of the Leydig cells of a seasonally reproducing bat, in which tissue was fixed by immersion, we noted that tubular SER and vesicular SER often occured in adjacent cells and sometimes in the same cell, and that the abundance of the two types of SER changed seasonally. We came to doubt the widelyheld dogma that vesicular SER was an artefact of immersion fixation and set out to test the hypothesis that the method of fixation does not modify the ultrastructure of the SER.


1977 ◽  
Vol 25 (5) ◽  
pp. 319-328 ◽  
Author(s):  
E Dannen ◽  
M E Beard

Organelles with the morphologic characteristics of peroxisomes have been found in the cells of the kidney sac of two terrestrial pulmonate gastropods. Arion ater and Ariolimax columbianus. These peroxisomes appear in profile as circles or ellipses, 0.25 micron in diameter and 0.3-0.8 micron long; They have a finely granular matrix and a single-limiting membrane; the organelles are extensively associated with smooth endoplasmic reticulum. Some Ariolimax peroxisomes contained structures reminiscent of nucleoids while those of Arion did not. The peroxisomes of Arion ater show a strongly-positive staining reaction with the 3,3'-diaminobenzidine technique, which is inhibited in the presence of aminotriazole. Peroxisomes of Ariolimax columbianus did not show a positive reaction, despite a number of variations of the 3,3'-diaminobenzidine protocol. Speculations are made concerning the biochemical reasons for this cytochemical behavior. Peroxisomes in both tissues were negatively stained while lysosomes were positively stained in acid-phosphatase incubations.


2016 ◽  
Author(s):  
Yushu Chen ◽  
Shashank Bharill ◽  
Zeynep Altun ◽  
Robert O'Hagan ◽  
Brian Coblitz ◽  
...  

Caenorhabditis eleganssenses gentle touch via a mechanotransduction channel formed from the DEG/ENaC proteins MEC-4 and MEC-10. An additional protein, the paraoxonase-like protein MEC-6, is essential for transduction, and previous work suggested that MEC-6 was part of the transduction complex. We found that MEC-6 and a similar protein, POML-1, reside primarily in the endoplasmic reticulum and do not colocalize with MEC-4 on the plasma membrane in vivo. As with MEC-6, POML-1 is needed for touch sensitivity, for the neurodegeneration caused by themec-4(d)mutation, and for the expression and distribution of MEC-4 in vivo. Both proteins are likely needed for the proper folding or assembly of MEC-4 channels in vivo as measured by FRET. MEC-6 detectably increases the rate of MEC-4 accumulation on theXenopusoocyte plasma membrane. These results suggest that MEC-6 and POML-1 interact with MEC-4 to facilitate expression and localization of MEC-4 on the cell surface. Thus, MEC-6 and POML-1 act more like chaperones for MEC-4 than channel components.


2020 ◽  
Vol 31 (9) ◽  
pp. 2044-2064 ◽  
Author(s):  
Suzie J. Scales ◽  
Nidhi Gupta ◽  
Ann M. De Mazière ◽  
George Posthuma ◽  
Cecilia P. Chiu ◽  
...  

BackgroundAPOL1 is found in human kidney podocytes and endothelia. Variants G1 and G2 of the APOL1 gene account for the high frequency of nondiabetic CKD among African Americans. Proposed mechanisms of kidney podocyte cytotoxicity resulting from APOL1 variant overexpression implicate different subcellular compartments. It is unclear where endogenous podocyte APOL1 resides, because previous immunolocalization studies utilized overexpressed protein or commercially available antibodies that crossreact with APOL2. This study describes and distinguishes the locations of both APOLs.MethodsImmunohistochemistry, confocal and immunoelectron microscopy, and podocyte fractionation localized endogenous and transfected APOL1 using a large panel of novel APOL1-specific mouse and rabbit monoclonal antibodies.ResultsBoth endogenous podocyte and transfected APOL1 isoforms vA and vB1 (and a little of isoform vC) localize to the luminal face of the endoplasmic reticulum (ER) and to the cell surface, but not to mitochondria, endosomes, or lipid droplets. In contrast, APOL2, isoform vB3, and most vC of APOL1 localize to the cytoplasmic face of the ER and are consequently absent from the cell surface. APOL1 knockout podocytes do not stain for APOL1, attesting to the APOL1-specificity of the antibodies. Stable re-transfection of knockout podocytes with inducible APOL1-G0, -G1, and -G2 showed no differences in localization among variants.ConclusionsAPOL1 is found in the ER and plasma membrane, consistent with either the ER stress or surface cation channel models of APOL1-mediated cytotoxicity. The surface localization of APOL1 variants potentially opens new therapeutic targeting avenues.


2019 ◽  
Vol 218 (7) ◽  
pp. 2215-2231 ◽  
Author(s):  
Lou Fourriere ◽  
Amal Kasri ◽  
Nelly Gareil ◽  
Sabine Bardin ◽  
Hugo Bousquet ◽  
...  

To ensure their homeostasis and sustain differentiated functions, cells continuously transport diverse cargos to various cell compartments and in particular to the cell surface. Secreted proteins are transported along intracellular routes from the endoplasmic reticulum through the Golgi complex before reaching the plasma membrane along microtubule tracks. Using a synchronized secretion assay, we report here that exocytosis does not occur randomly at the cell surface but on localized hotspots juxtaposed to focal adhesions. Although microtubules are involved, the RAB6-dependent machinery plays an essential role. We observed that, irrespective of the transported cargos, most post-Golgi carriers are positive for RAB6 and that its inactivation leads to a broad reduction of protein secretion. RAB6 may thus be a general regulator of post-Golgi secretion.


1979 ◽  
Vol 83 (2) ◽  
pp. 300-307 ◽  
Author(s):  
A Vorbrodt ◽  
P Meo ◽  
G Rovera

Induction of differentiation of a human promyelocytic leukemic cell line (HL60) in culture is accompanied by changes in acid phosphatase (Acpase) activity. The increase in activity is less than twofold when the leukemic cells are stimulated by dimethylsulfoxide (DMSO) to differentiate into metamyelocytes and granulocytes but is eightfold when the cells are stimulated by the tumor-promoting agent 12-0-tetradecanoylphorbol 13-acetate (TPA) to differentiate into macrophage-like cells. Five different isozymes of Acpase were separated by acrylamide gel electrophoresis. Isozyme 1, the most anodal isozyme, was found to be present in undifferentiated, DMSO-treated and TPA-treated cells; isozyme 2 was a very faint band observed both in DMSO- and TPA-treated cells, the isoenzymes 3a and 3b were present only in TPA-induced cells; and isozyme 4, the most cathodal isozyme, was present both in TPA- and DMSO-induced cells. A time sequence study on the appearance of the various forms after TPA treatment indicated that the expression of the isozymes is regulated in an uncoordinated fashion. Acpase activity has been shown by ultrastructural cytochemistry to be localized in the entire rough endoplasmic reticulum (RER) and in areas of the smooth endoplasmic reticulum (SER) located near the Golgi complex in differentiating cells but to be extremely weak, if at all detectable, in undifferentiated promyelocytes.


Sign in / Sign up

Export Citation Format

Share Document